The Society for Economic Studies
The University of Kitakyushu
Working Paper Series No.2012-13
(accepted in March 25, 2013)

Re-evaluating the Tobin Tax

New evidence from tick-by-tick quotation data on twelve currency pairs

Hiroyuki Ono
Toyo University
hiroono@toyo.jp
Minoru Hayashida
The University of Kitakyushu
hayasida@kitakyu-u.ac.jp

Preliminary

Do Not Quote

Abstract

This paper attempts to reevaluate the Tobin Tax's capability to stabilize the foreign exchange market and to raise revenues, using tick-by-tick quotation data from twelve currencies with an ARFIMA model. The results are that the coefficients for the transaction costs are of the positive sign and highly significant in the model using exchange rate volatility as an objective variable across all currency pairs. However, the results for volume are mixed and do not form a clear picture, while the elasticity is less than unity in absolute value even in cases where negative and significant coefficients are obtained. These imply that the Tobin Tax would not contribute to market stability, but may be useful in raising revenues.

1. Introduction

More than three decades ago, James Tobin (1978) proposed taxing foreign exchange transactions; the proposal is now known as the Tobin Tax. The rationale for such a tax was twofold. First, by raising transaction costs, it would penalize so-called "noise traders," thereby stabilizing the currency market. Second, the tax would raise necessary revenues for international organizations, which are chronically in budgetary shortage. The tax could therefore promote various programs considered publicly beneficial across national borders, addressing matters such as global warming and development aid, carried out by the organizations. After its cool, if not antagonistic reception for more than a decade, Tobin's (1978) proposal has gradually gained serious attention among professional economists and policymakers, while remaining just an idea, rather than a policy option, and without igniting much enthusiasm to date ${ }^{1}$.

In the face of very volatile and unpredictable foreign exchange markets, however, the Tobin Tax has received renewed interest in recent years. After the bankruptcy of Lehman Brothers, the US Dollar depreciated more than 17\% against the Japanese Yen in just 4 months ${ }^{2}$. Less than a year and half later, the Euro started to depreciate against major currencies after Greece announced its budget problems. Within 6 months, the Euro depreciated 18.5\% against the Japanese Yen and 15.8% against the US Dollar ${ }^{3}$. Further, after the great earthquake on March 11, 2011, while most people predicted that the Japanese Yen would depreciate against other currencies, it in fact appreciated 7.7\% against the US Dollar and 8.2\% against the Euro within 6 months.

In view of such developments in foreign exchange markets, in recent years several political leaders have openly talked about the Tobin Tax ${ }^{4}$. Some economists have echoed them ${ }^{5}$, and the IMF has responded with a proposal for new taxes ${ }^{6}$. In Europe, real actions toward a financial transaction tax have been pushed forward.

[^0]
According to the European Commission ${ }^{7}$:

As from September 2012 the European Commission received requests of eleven Member States asking it to submit a proposal for a Council Decision to authorize enhanced cooperation. Its objectives and scope were requested to be based on the original Commission FTT proposal. The Commission's analysis provided a positive outcome. On 23 October 2012 the Commission proposed to the Council to authorize the enhanced cooperation in the area of financial transaction tax. The European Parliament gave its consent to the latter proposal on 12 December 2012 and on 22 January 2013 the EU Council adopted a decision authorizing eleven Member States to go ahead with enhanced cooperation on a common system of financial transaction tax (FTT).

Although the proposal does not cover currency transactions, it may lay some ground to cover them if actually made into law in those countries ${ }^{8}$.

Since there has been no country that ever taxed currency transactions, rigorous empirical research on the Tobin Tax per se has been very limited; the research on the effects of transaction taxes is largely limited to the stock market. However, a few exceptions indicate a positive relationship between the transaction costs and volatility in the foreign exchange markets. Although not explicitly focusing on the transaction tax, a large volume of literature also offers some implications for currency transactions; most such studies suggest that the bid-ask spread as a proxy of transaction costs and measures of volatility are positively correlated; the evidence for the relationship between the spread and trading activities is mixed and remains unclear.

In view of this, the present paper reinvestigates whether the Tobin Tax, if implemented, would stabilize the market and raise necessary revenues, adding another clinical data point on these issues. To do so, the paper employs an Auto-Regressive Fractionally Integrated Moving Average (referred to as ARFIMA hereinafter) model, using high-frequency, tick-by-tick quotation data across twelve currency pairs. The main conclusions of the paper are that the tax would not contribute to stability; it would rather decrease it. However, the tax may contribute to the raising of revenue.

The rest of the paper is organized as follows. The next section reviews previous literature. Section 3 discusses data and methodology. Section 4 and 5 present estimation results for exchange rate volatility and trading activities, respectively. The final section concludes the paper, with summary, caveats, and venues for future

[^1]extensions.

2. Literature Review

While the issue of whether a transaction tax enhances market stability has been largely explored in the context of stock trading ${ }^{9}$, research focusing on transaction taxes in currency trading has been very scarce. Among the few exceptions, Aliber et al. (2003) examine the relationship between transaction costs measured by the average bid-ask spread, on the one hand, and volatility of exchange rate returns and trading volume, on the other. Using monthly data, constructed from daily futures data from January 1, 1977 to December 31, 1999, they find that volatility is positively associated, while trading volume is negatively associated, with the transaction costs for three major currencies - British Pound, Japanese Yen, and Swiss Franc - against the US Dollar ${ }^{10}$.

Improving on some methodological issues in Aliber et al. (2003), Lanne and Vesala (2006) investigate the problem, using HFDF93 data on the German Mark and Japanese Yen against the US Dollar. First, having constructed daily realized variances, by computing the percentage differences of the logarithmic bid and ask prices closest to the end of five-minute intervals, they regress the variances on the transaction cost measures together with a one-period lagged objective variable, Friday dummy, and Holiday dummy. They found a positive correlation between the transaction cost and volatility of exchange rate returns for both currencies. Second, they use the five-minute returns directly and conduct the Flexible Fourier form (FFF) regressions [e.g. Gallant (1981, 1982), and Andersen and Bollerslev (1997)], and confirm the results above.

Away from the focus on the transaction tax, several other papers also have investigated the relationship between the bid-ask spread as a proxy of transaction costs and exchange rate volatility. Boothe (1988) finds evidence for a positive correlation between them for seven major currencies over the period 1980 to 1981. Bollerslev and Melvin (1994), using over 300,000 quotations in the Deutsche Mark / US Dollar interbank market, present evidence that the size of the bid-ask spread is positively related to the underlying exchange rate uncertainty. Bessembinder (1994) shows evidence that the spread and forecast return variance are positively

[^2]associated ${ }^{11}$. Defining volatility as the log first difference of the middle and closing rates, Hartmann (1999) finds a positive correlation between the spread and predicted return volatility for daily JPY/USD data from December 1989 to January 1995. In contrast to these studies, with data provided by EBS Co. Ltd, for JPY/USD and EUR/USD from 1 January 1999 to 31 December 2001, Ito and Hashimoto (2006) find a negative correlation between the spread and volatility, defined as average absolute one-minute change in the log of the midpoint, bid-ask quotes. However, using the same data but in lower frequency (15 minutes) intervals, Hua and Li (2011) estimated PGARCH models and found evidence that bid-ask spreads ${ }^{12}$ are positively associated with exchange rate volatility for the JPY/USD rate ${ }^{13}$.

On the relationship between the spread and trading activities, however, the empirical evidence is much more mixed, despite market microstructure theories' predicting a negative correlation. While Glassman (1987) finds a positive relationship, Bessembinder (1994) and Hartman (1999) show that the relationship is different, whether the volume is expected or not; the expected volume is negatively associated with the spread, while the reverse relationship is found for the unexpected volume. While Lyons (1995) reveals a positive correlation between the dealers' order size and the bid-ask spread, Ding (2007) finds that spreads are independent of order sizes in the inter-dealer market, but that they are negatively correlated in the customer market. Ito and Hashimoto (2006) find that the width of bid-ask spread is negatively correlated with the number of deals during business hours. Hua and Li (2011) also find a negative correlation of the width of bid-ask spread with the number of deals as well as the number of quotation changes.

All in all, the existing literature largely, if not unequivocally, suggests a positive correlation between the spread and volatility, but the evidence for trading activities remains unclear. This motivates the present paper. In comparison with these studies, the paper distinguishes itself in the following manners. First, it covers a wider range of currency exchange rates. Second, in view of a long memory property of the variables in question, the paper employs ARFIMA models. Third, the paper uses tick-by-tick quotation data recorded in the frequency of $1 / 100$ th of a second.

[^3]
3. Data and Methodology

3-1 Data

The data used in this study are on a tick-by-tick quotation basis, drawn from Thompson Reuters' Tick History©. There are eleven series for each pair of foreign exchanges in the data set on the GMT basis: price, volume, bid price, bid size, ask price, ask size, open, high, low, accumulated volume, and turnover. Among these, bid price, bid size, ask price, and ask size are recorded whenever new orders are made, while price, volume, and turnover are recorded every time deals are made, timed to $1 / 100$ th of a second. Accumulated volume is the sum of turnover of transactions made up to the point. Turnover is the product of the price and volume. Open is the opening price of the day. High and Low are the highest and lowest prices of the day up to the point. A sample for JPY/USD is shown in Table A-1 in the Appendix.

The data to analyze are the following twelve pairs of foreign exchange rates: (1) EUR/USD, (2) JPY/USD, (3) GBP/USD, (4) CHF/USD, (5) EUR/JPY, (6) EUR/GBP, (7) EUR/AUD, (8) EUR/CHF, (9) GBP/JPY, (10) AUD/JPY, (11) ZAR/JPY and (12) GBP/AUD ${ }^{14}$. There are roughly 140,000 data points for each of these pairs ${ }^{15}$. The period for the analysis is from April 25, 2010 to August 31, 2011.

To date, no country has ever taxed currency transactions, so there are no actual data for a transaction tax on currency exchange. However, it is an established practice to treat the bid-ask spread as a measure of transaction costs [e.g. Glassman (1987), Boothe (1988), and Lanne and Vesala (2006)], and to view it as a proxy for the transaction tax. The rationale behind this is that, once the tax is levied, traders would include the amount to be taxed away in bid and ask prices when offering them; so, the bid-ask spread would increase when the tax is imposed. We employ this strategy. More specifically, the transaction cost, referred to as COST, is defined as:

$$
\operatorname{cosT}=\frac{A S K-B I D}{A S K+B I D}
$$

Here, ASK and BID refer to the arithmetic means of quoted ask and bid prices in each five-minute interval, respectively. The volatility measure, referred to as VOL,

[^4]is the standard deviation of prices within the five-minute intervals ${ }^{16}$. The data on volume itself is used and summed over the same five-minute intervals. It is referred to as TO.

Descriptive statistics are presented in Table 1 below. Together, the results of the unit root (ADF) tests are presented. For all of the twelve pairs, VOL, COST, and TO are stationary.

Table 1: Descriptive Statistics

	(1) EUR/USD			(2) JPY/USD			(3) GBP/USD			(4) CHF/USD		
	VOL	SPREAD	TO									
Mean	0.000228	0.000142	7.765375	0.013001	0.014463	12.22432	0.000263	0.000247	5.397821	0.000223	0.000273	4.948259
Median	0.000196	0.00014	4.428571	0.01077	0.013893	8.444444	0.000212	0.000239	2	0.000173	0.00026	2
Maximum	0.004809	0.001233	500	0.424939	0.23686	502	0.003114	0.002667	300.3333	0.004738	0.005575	500
Minimum	0	-0.00026	1	0	-0.024273	1	0	-0.000313	1	0	-0.0000809	1
SD	0.000166	0.0000374	14.75503	0.009423	0.004408	15.61478	0.000219	0.0000715	12.75667	0.00022	0.0000868	11.03716
ADF	-41.4763	-30.32089	-38.4352	-34.5766	-24.90011	-55.5144	-121.923	-28.46215	179.4821	-72.9373	-33.34474	-130.811
lag	9	27	14	18	22	17	0	25	0	0	25	0
P -value	0	0	0	0	0	0.0001	0.0001	0	0.0001	0.0001	0	0.0001

	(5) EUR/JPY			(6) EUR/GBP			(7) EUR/CHF			(8) EUR/AUD		
	VOL	SPREAD	TO									
Mean	0.024358	0.023552	8.854247	0.000158	0.000179	4.992337	0.000326	0.000334	4.700905	0.000255	0.000257	5.491593
Median	0.020226	0.022816	6.494426	0.000141	0.000173	1	0.000252	0.000321	1.690476	0.000207	0.000235	1.571429
Maximum	0.593169	0.300952	536.3333	0.002748	0.001741	400	0.006904	0.0041	300	0.00512	0.005234	550
Minimum	0	-0.034089	1	0	-0.0000627	1	0	-0.000137	1	0	-0.000112	1
SD	0.016932	0.006754	10.46026	0.000162	0.0000491	15.69498	0.000341	0.000105	10.5778	0.000267	0.0001	13.19215
ADF	-29.5156	-19.36188	-58.4789	-3.48694	-32.13199	-84.6066	-53.7253	-35.73439	-34.6322	-58.0225	-13.68827	-101.985
lag	18	33	15	2	20	0	0	21	2	0	36	0
P -value	0	0	0.0001	0.009	0	0.0001	0.0001	0	0	0.0001	0	0.0001

	(9) JPY/GBP			(10) JPY/AUD			(11) JPY/ZAR			(12) GBP/AUD		
	VOL	SPREAD	TO									
Mean	0.028519	0.032722	7.741521	0.02081	0.022182	10.10834	0.00643	0.017729	4.25709	0.000338	0.000431	3.967701
Median	0.024133	0.031506	5.433333	0.017187	0.021475	7.75	0.006124	0.015983	2.230769	0.000265	0.000381	1
Maximum	0.782366	0.537027	500	0.546718	0.471613	261.5	0.132952	0.235	210	0.005508	0.007842	290
Minimum	0	-0.019401	1	0	-0.026091	1	0	-0.006335	1	0	-0.0000749	1
SD	0.019518	0.010272	10.21529	0.014034	0.007288	9.074758	0.005184	0.008221	6.314362	0.000353	0.000158	10.35992
ADF	-17.1669	-38.47533	-68.1296	-12.863	-35.84689	-27.1738	-21.3316	-40.74617	-100.739	-0.35819	-18.28017	-102.075
lag	35	17	11	59	19	36	9	15	3	14	27	0
P -value	0	0	0.0001	0	0	0	0	0	0.0001	0.8962	0	

3-2 Methodology

It is well known that volatility has a long memory. In such cases, ARFIMA models are now widely used. $\operatorname{ARFIMA}(\mathrm{p}, \mathrm{d}, \mathrm{q})$ is in general defined to be:

$$
\begin{gathered}
\Phi(L)(1-L)^{d}\left(y_{t}-\mu\right)=\mathrm{H}(L) u_{t}, \\
u_{t} \sim W N\left(0, \sigma_{u}^{2}\right)
\end{gathered}
$$

where $\Phi(L)$ and $H(L)$ are polynomial equations of lag operator L with dimensions p and q respectively, and absolute values of roots of characteristic equations are larger than $1 . W N\left(0, \sigma_{u}^{2}\right)$ is white noise with mean zero variance σ_{u}^{2}, and d is a difference parameter to take fractional values. Note that

$$
(1-L)^{d}=1+\sum_{k=1}^{\infty} \frac{d(d-1) \cdots(d-k+1)}{k!}(-L)^{k} .
$$

[^5]If $0<d<\frac{1}{2}, y_{t}$ has a long memory; if $d<\frac{1}{2}, y_{t}$ is stationary; and if $d>-\frac{1}{2}, y_{t}$ is invertible.

As shown in Table A-2 in the Appendix, both VOL and TO exhibit a long memory property for all twelve pairs, justifying the use of the ARFIMA model. In the analyses below, we set $p=q=0$ as a first approximation for the current paper. For the exchange rate volatility as an objective variable, we estimate two models: one with constant and transaction cost only (Model 1) as explanatory variables, and one with volume and linear time trend in addition (Model 2). For the turnover as an objective variable, Model 1 is the same, but Model 2 only adds linear time trend.

4. Transaction Costs and Exchange Rate Volatility

It is shown in Table 2 that, across twelve currency pairs, the estimated coefficients of COST are of the positive sign and highly significant; the P -values are less than 1% in all cases. The d-parameter falls between 0 and $1 / 2$, confirming the stationary property in Table 1. This is true for both Model 1 and Model 2. This implies, in line with much of the literature, that transaction cost increases with exchange rate volatility.

Table 2: Transaction Costs and Exchange Rate Volatility

	EUR/USD		JPY/USD		GEP/USD		CHF/USD		EURJJPY		EUR/GBP	
	Model 1	Model 2	Model 1	Model 2	Model 1	Model 2	Model 1	Model2	Model 1	Model2	Model 1	Model 2
d-parameter	0.124519	0.124014	0.122879	0.122348	0.115281	0.114222	0.150552	0.150153	0.112684	0.112708	0.10015	0.100703
	0.0000	0		0	0	0		0	0	0	0	
constant	8.08026	7.26012	10.4632	9.5796	5.81804	6.77606	5.35494	4.75675	8.85389	9.01562	6.20727	6.03434
	0	0	0	0	0	0	0	0	0	0	0	0
COST	-4110.4	-3945.7	20809.1	21009.1	-4090.67	-6054.27	-1005.5	-1625.58	-317.633	-384.939	-5647.58	-5338.78
	0.394	0.414	0	0	0.29	0.123	0.635	0.449	0.857	0.827	0.447	0.478
Time trend		21.0754		18.1124		-47.4541		73.7516		-3.2401		38.4688
		0.003		0.002		0.004		0.099		0.354		0.818
log likelihood	-309576	-309569	-395415	-395408	-130931	-130924	-68693.2	-68688	-355211	-355210	-30663.1	-30658
number of observations	77,048	77,048	95,681	95,681	34,245	34,245	18,674	18,674	95,574	95,574	7,450	7.450
number of parameters	4	5	4		4	5		5	4	5	4	
AlC.T	619159.2	619148.5	790837.7	790826.5	261,869	261857.5	137394.3	137386	710430.9	710429.5	61334.21	61325.92
AlC	8.036019	8.035881	8.265358	8.265241	7.646931	7.646591	7.357518	7.357074	7.433307	7.433292	8.23278	8.231667
σ	13.4528	13.4521	15.087	12.2347	11.0759	11.0748	9.5854	9.58496	9.95213	9.95213	14.8625	14.8635
	EUR/AUD		EUR/CHF		GBP/JPY		AJD/JPY		ZAR/JPY		GBP/AUD	
	Model 1	Madel 2	Model 1	Madel 2	Model 1	Madel 2	Model 1	Model2	Model 1	Model2	Model 1	Model 2
d-parameter	0.206385	0.204575	0.122178	0.118368	0.110482	0.108007	0.139564	0.138198	0.086363	0.086452	0.125867	0.125147
	0.0000	0	0	0	0	0	0	0	0	0	0	
constant	6.57537	8.77874	5.31255	4.24554	8.14308	9.35164	9.34218	8.29412	4.11262	4.08328	4.01964	3.33406
	0.00000	0	0	0	0	0	0	0	0	0	0	
COST	-7205.28	-7606.27	668.175	-1172.67	-3027.97	-3867	5056.46	5547.3	589.928	591.864	477.011	755.820
	0.061	0.048	0.774	0.623	0.029	0.005	0	0	0	0	0.821	0.721
Time trend	.	-279.394		233.392		-23.6444		20.3996		0.979209		112.06
		0.01		0.001		0		0		0.77		0.07
log likelihood	-60268.3	-60260.4	-41828.4	-41818.8	-347315	-347291	-345263	-345248	-182297	-182296	-41454.7	-41448.9
number of observations	15.499		11,352	11,352	93,577	93,577	96,423	96,423	57,021	57.021	11,621	11.621
number of parameters	4	5	4	5	4	5	4	5	4	5	4	
AlC.T	120544.6	120530.7	83664.88	83647.6	694638.3	694591.6	690533.5	690505.8	364602.5	364602	82917.32	82907.8
AlC	7.777574	7.776677	7.370056	7.368534	7.423173	7.422675	7.161502	7.161215	6.394179	6.39417	7.135128	7.134309
\square	11.828	11.8258	9.64835	9.64416	9.90181	9.89942	8.68742	8.68625	5.91916	5.9192	8.57859	8.57775

(Note) The lower entries for the d-parameter, a constant, COST and time trend are P-values associated with the estimated coefficients in the upper entry.

It is worth investigating whether the above results remained the same before the earthquake on March 11, 2011. As mentioned earlier, most people predicted the Japanese Yen would depreciate against major currencies in the aftermath of the earthquake, but in fact it appreciated. This may suggest some anomaly in the movement of exchange rates involving the Japanese Yen after the earthquake. Therefore, for those exchange rates, the models are also estimated with the sample before March 11. The results are shown in Table 3. There is not much difference between the results in Table 2 and Table 3. Therefore, the above conclusion holds: an increase in transaction costs would increase exchange rate volatility.

Table 3: Transaction Costs and Exchange Rate Volatility (Currency Pairs involving the Japanese Yen before March 11, 2011)

	JPY/USD		EUR/JPY		GBP/JPY		AUD/JPY		ZAR/JPY	
	Model 1	Model 2								
d-parameter	0.314969	0.313336	0.308407	0.305391	0.296391	0.292497	0.309902	0.306086	0.145198	0.137234
	0	0	0	0	0	0	0	0	0	
constant	0.009213	0.012551	0.018197	0.027557	0.019845	0.030794	0.014197	0.022207	0.000338	0.001504
	0	0	0	0	-	0	0	0	0	
COST	49.7461	48.5993	63.0378	62.7098	82.6266	82.6995	49.7217	48.8741	8.45726	8.38003
	0	0	0	0	0	0	0	0	0	0
TO		69.2319	-	107.127		92.7279		150.467		31.3916
		0		0		0		0		
Time trend	-	-0.13135	-	-0.33199		-0.38598		-0.30159		-0.07338
		0		0		0		0		0
log likelihood	216150.8	216812.9	180829	181082.4	166890.8	167038.2	196463.8	197033	136627	136691.7
number of observations	62,114	62,114	61,923	61,923	60,759	60,759	62,601	62,601	34,332	34,332
number of parameters	4	6	4	6	4	6	4	6	4	6
AIC.T	-432294	-433614	-361650	-362153	-333774	-334064	-392920	-394054	-273246	- 273371
AIC	-6.95968	-6.98093	-5.84032	-5.84844	-5.4934	-5.49819	-6.27657	-6.29469	-7.95893	-7.96258
	0.007453	0.007374	0.013045	0.012991	0.015515	0.029605	0.010488	0.010393	0.00452	0.004512

(Notes) See the notes in Table 2.

As mentioned before, the tax on transactions would increase the bid-ask spread, as traders would include the amount to be taxed away in bid and ask prices when proposing them. In so much as it is true, the above results imply that the Tobin Tax would increase, not decrease, the foreign exchange volatility.

5. Transaction Cost and Trading Volume

The results in the previous section suggest that the Tobin Tax, raising transaction costs, would not contribute to the stability of foreign exchange rates, as Tobin (1978) and his proponents expected. That does not mean that the tax is
useless, however, because another case for the tax is that it may raise revenue to be used for various international programs, such as global warming or development aid. Whether the tax is a good revenue source is the subject of this section.

To examine that, an ARFIMA model is estimated as before, because TO also exhibits a long memory, as Table A-2 in the Appendix shows. The results are reported in Table X. As is the case with previous studies, the results are mixed, and show no clear-cut picture. The estimated coefficients for COST are: negative and significant for EUR/AUD and GBP/JPY, positive and significant for JPY/USD, AUD/JPY, and ZAR/JPY, and insignificant for the other seven currency pairs. It is difficult to draw any conclusive statements from these results.

Table 4: Transaction Costs and Trading Volume

	EUR/USD		JPY/USD		GBP/USD		CHF/USD		EUR/JPY		EUR/GBP	
	Model 1	Model 2	Model 1	Model2								
d-parameter	0.124519	0.124014	0.122879	0.122348	0.115281	0.114222	0.150552	0.150153	0.112684	0.112708	0.10015	0.100703
	0.0000	0	0	0	0	0	0	0	0	0	0	0
constant	8.08026	7.26012	10.4632	9.5796	5.81804	6.77606	5.35494	4.75675	8.85389	9.01562	6.20727	6.03434
	0	0	0	0	0	0	0	0	0	0	0	0
COST	-4110.4	-3945.7	20809.1	21009.1	-4090.67	-6054.27	-1005.5	-1625.58	-317.633	-384.939	-5647.58	-5338.78
	0.394	0.414	0	0	0.29	0.123	0.635	0.449	0.857	0.827	0.447	0.478
Time trend	-	21.0754		18.1124		-47.4541		73.7516		-3.2401		38.4688
		0.003		0.002		0.004		0.099		0.354		0.818
log likelihood	-309576	-309569	-395415	-395408	-130931	-130924	-68693.2	-68688	-355211	-355210	-30663.1	-30658
number of observations	77,048	77,048	95,681	95,681	34,245	34,245	18,674	18,674	95,574	95,574	7,450	7,450
number of parameters	4	5	4	5	4	5	4	5	4	5	4	5
AlC. T	619159.2	619148.5	790837.7	790826.5	261,869	261857.5	137394.3	137386	710430.9	710429.5	61334.21	61325.92
AIC	8.036019	8.035881	8.265358	8.265241	7.646931	7.646591	7.357518	7.357074	7.433307	7.433292	8.23278	8.231667
σ	13.4528	13.4521	15.087	12.2347	11.0759	11.0748	9.5854	9.58496	9.95213	9.95213	14.8625	14.8635
	EUR/AUD		EUR/CHF		GBP/JPY		AUD/JPY		ZAR/JPY		GBP/AUD	
	Model 1	Model 2										
d-parameter	0.206385	0.204575	0.122178	0.118368	0.110482	0.108007	0.139564	0.138198	0.086363	0.086452	0.125867	0.125147
	0.0000	0	0	0	0	0	0	0	0	0	0	0
constant	6.57537	8.77874	5.31255	4.24554	8.14308	9.35164	9.34218	8.29412	4.11262	4.08328	4.01964	3.33406
	0.00000	0	0	0	0	0	0	0	0	0	0	0
COST	-7205.28	-7606.27	668.175	-1172.67	-3027.97	-3867	5056.46	5547.3	589.928	591.864	477.011	755.820
	0.061	0.048	0.774	0.623	0.029	0.005	0	0	0	0	0.821	0.721
Time trend	-	-279.394	-	233.392	-	-23.6444	-	20.3996		0.979209		112.06
		0.01		0.001		0		0		0.77		0.07
log likelihood	-60268.3	-60260.4	-41828.4	-41818.8	-347315	-347291	-345263	-345248	-182297	-182296	-41454.7	-41448.9
number of observations	15,499		11,352	11,352	93.577	93,577	96,423	96,423	57,021	57.021	11.621	11,621
number of parameters	4	5	4	5	4	5	4	5	4	5	4	5
AlC. T	120544.6	120530.7	83664.88	83647.6	694638.3	694591.6	690533.5	690505.8	364602.5	364602	82917.32	82907.8
AIC	7.777574	7.776677	7.370056	7.368534	7.423173	7.422675	7.161502	7.161215	6.394179	6.39417	7.135128	7.134309
\square	11.828	11.8258	9.64835	9.64416	9.90181	9.89942	8.68742	8.68625	5.91916	5.9192	8.57859	8.57775

(Note) The lower entries for the d-parameter, a constant, COST and time trend are P-values associated with the estimated coefficients in the upper entry.

It should be reminded that the period after March 11, 2011 could be anomalous for the Japanese Yen. That may be seen in that the coefficient is positive and significant for three out of five pairs involving the currency, despite the microstructure literature expectation of a negative relation. So it is worth investigating, as before, excluding data after the earthquake. The results are shown in Table 5. There is not much difference between the results in Table 4 and Table 5.

Therefore, the above conclusion holds: no conclusive statements are drawn ${ }^{17}$.

Table 5: Transaction Costs and Trading Volume
(Currency Pairs involving the Japanese Yen before March 11, 2011)

	JPYYUSD		EURVJPY		GBP/JPY		AUDIJPY		ZARJJPY	
	Model 1	Model 2								
d-parameter	0.135977	0.135391	0.110843	0.110867	0.117768	0.117041	0.135642	0.125791	0.0843	0.081919
	0	0	0	0	0	0	0	0	0	0
constant	10.989	9.99619	8.98121	8.78533	8.55316	9.28552	9.62415	6.90221	4.23558	3.69748
	0	0	0	0	0	0	0	0	0	0
OOST	12743.1	12922.8	-1167.24	-1033.42	-3359.34	-3823.17	3351.88	4370.18	517.408	570.413
	0	0	0.603	0.646	0.07	0.039	0.011	0	0	0
Time trend	-	31.4625		5.88039		-22.2106		82.1057		29.072
		0.009		0.367		0.002		0		0
log likelihood	-257373	-257367	-232382	-232380	-229116	-229110	-226082	-226006	-111084	-111074
number of observations	62,114	62,114	61,923	61,923	60,759	60,759	62,601	62,601	34,332	34,332
number of parameters	4	5	4	5	4	5	4	5	4	5
AIC.T	514754.2	514744.4	464772.1	464769.5	458240.8	458229.5	452171.7	452021.3	222176.7	222157.3
AIC	8.287249	8.287092	7.505645	7.505604	7.541942	7.541756	7.223075	7.220673	6.471418	6.470853
σ	15.2539	15.2532	10.3192	10.3192	10.5082	10.5074	8.95941	8.94883	6.15249	6.15101

(Notes) See the notes in Table 4

Taken at face value, the above results imply that, since an increase in transaction costs through a transaction tax does not reduce the trading volume, the tax would certainly raise revenues for the 10 cases, except for EUR/AUD and GBP/YEN. It is of interest, in these two cases where the negative and significant coefficients are estimated, to calculate the tax elasticity of trading volume. Even if the coefficient is negative and significant, the tax may be a good revenue source if elasticity is less than unity in the absolute value. Here, because the transaction cost is approximated by the spread, our linear elasticity measure, η, is defined:

$$
\eta=\frac{\left(V O_{t}-V O_{t-1}\right) / V O_{t-1}}{\left(S P R E A D_{t}-\text { SPREAD }_{t-1}\right) / S P R E A D_{t-1}}=\frac{Y_{t}}{X_{t}}
$$

Here, $Y_{t} \equiv\left(V O_{t}-V O_{t-1}\right) / V O_{t}$ and $X_{t} \equiv\left(S P R E A D_{t}-\right.$ SPREAD $\left._{t-1}\right) / S_{\text {SREAD }}^{t}$. The estimate for η is obtained by regressing Y on X with a constant.

The results are the following:

$$
\begin{aligned}
& \text { [EUR/AUD] } \\
& \qquad \begin{aligned}
\hat{Y}_{t}=1.709699 & -0.302522 X_{t} \\
(0.0000) & (0.1864) \\
& \mathrm{N}=18,705
\end{aligned} \mathrm{R}^{2}=0.000040
\end{aligned}
$$

[GBP/JPY]

$$
\begin{aligned}
& \hat{Y}_{t}= 0.750683-0.030664 X_{t} \\
&(0.0000) \\
&(0.1436)
\end{aligned}
$$

[^6]$$
\mathrm{N}=94,423 \quad \mathrm{R}^{2}=0.000012
$$

The figures in the parenthesis are the P values associated with the estimated coefficients above them. In both cases, the estimated η is of the negative sign and less than unity in absolute value. This implies that, even in these two cases where the transaction costs are negatively correlated with trading volume, the transaction tax would still be a useful vehicle for raising revenues.

6. Concluding remarks

This paper investigates whether the Tobin Tax would contribute to the stability of foreign exchange markets and would be capable of raising revenues. The data used are tick-by-tick quotation data for 12 currency pairs drawn from Thompson Reuters' Tick History © for the period from April 25, 2010 to August 31, 2011. Since the Tobin Tax would increase transaction costs, which are approximated by the average bid-ask spread over five-minute intervals, average bid-ask spread serves as our "hypothetical" rate of the Tobin Tax. The market stability is measured by standard deviation of deal prices over the same intervals. Given that both the stability measure and the average of the deal volumes in the same intervals exhibit a long-memory property, the paper employs ARFIMA models.

The results are that coefficients for the transaction costs are positive and highly significant unanimously in the models with the stability measure as an objective variable. This would imply that the Tobin Tax would damage market stability, rather than ameliorate it. However, in the models with trading volumes as an objective variable, the results do not show any uniform tendency one way or the other: out of 12 cases, the coefficients for the transaction costs are negative and significant for 2 cases, positive and significant for 3 cases, and insignificant for 7 cases. If the tax would not affect or increase the trading volume, it would raise revenues, but if the tax decreases the volume, the degree to which it does so matters. If elasticity is greater than unity in absolute value, the tax revenue, which is the product of the tax rate and volume, would not be raised. In the two cases where the coefficients were negative and significant, the elasticity is calculated to be less than unity in absolute value. Therefore, taking these results at face value, they imply that the Tobin Tax would be useful in raising revenues, even if it does not contribute to stability.

In concluding the paper, it is worth mentioning some caveats and future extensions. This paper defines the stability of the market as that of the price level
and examines the volatility of deal prices, but a number of studies examine the volatility of price return. To see the robustness of the present results, it may be useful to examine return volatility as well. Also, the paper takes deal volume as an indicator for market activity, but the number of deals within the five-minute interval and other related variables, subject to availability, are worth investigating. This paper use five minutes as a frequency of estimation, but it may be interesting to examine how the results change when the frequency is altered to, say, one minute or thirty minutes. Further, if the twelve foreign exchange markets under study should be viewed as closely interrelated, estimating them independently may be inappropriate; the Seemingly Unrelated Estimation (SURE) may be necessary to obtain efficient estimates. These are all interesting topics to explore, but are left to future investigations.

References

Aliber, R. Z., Chaodhry, B. and Yan S. (2003) Some evidence that a Tobin tax on foreign exchange transactions may increase volatility, European Finance Review, 7, 481-510.

Andersen, T. G. and Bollerslev, T. (1997) Intraday periodicity and volatility persistence in financial markets, Journal of Empirical Finance, 4, 115-158.

Bessembinder, H. (1994) Bid-ask spreads in the interbank foreign exchange markets, Journal of Financial Economics, 35, 317-48.

Bollerslev, T. and Melvin, M. (1994) Bid-ask spreads and volatility in the foreign exchange market: an empirical analysis, Journal of International Economics, 36, 355-72.

Boothe, P. (1988) Exchange rate risk and the bid-ask spread: a seven country comparison, Economic Inquiry, 26, 485-92.

Ding, L. (2007) Bid-ask spread and order size in the foreign exchange market: an empirical investigation, Working Paper, Macalester College, St. Paul, MN.

Glassman, D. (1987) Exchange rate risk and transaction costs: evidence from bid-ask spreads, Journal of International Money and Finance, 6, 481-90.

Gallant, A. R. (1981) On the basis in flexible functional forms and an essentially unbiased form: the Fourier flexible form, Journal of Econometrics, 15, 211-245.

Gallant, A. R. (1982) Unbiased determination of production technologies, Journal of Econometrics, 20, 285-323.

Hayashida, M, and Ono, H. (2010) Tax reform and stock return volatility: the case of Japan, The Society of Economic Studies Working Paper Series, No. 2010-1, the University of Kitakyushu.

Hartmann, P. (1999) Trading volumes and transaction costs in the foreign exchange market: evidence from daily dollar-yen spot data, Journal of Banking and Finance, 23, 801-24.

Hu, S. Y. (1998). The effects of the stock transaction tax on the stock market: experiences from Asian markets. Pacific Basin Finance Journal, 6, 347-364.

Hua, M. and Li, C.Y. (2011) The intraday bid-ask spread behavior of the JPY/USD exchange rate in the EBS electronic brokerage system, Applied Economics, 43, 2003-2013.

Ito, T. and Hashimoto, Y. (2006) Intraday seasonality in activities of the foreign exchange markets: evidence from the electronic broking system, Journal of the Japanese and International Economies, 20, 637-64.

Lanne, M, and Vesala, T. (2006) The effect of a transaction tax on exchange rate volatility, Bank of Finland Research Discussion Papers, 11, 2006.

Lyons, R. K. (1995) Tests of microstructural hypotheses in the foreign exchange market, Journal of Financial Economics, 39, 321-51.

Tobin, J. (1978) A proposal for international monetary reform, Eastern Economic Journal, 4, 153-159.

Tobin, J. (1996) Prologue, in Haq, M, Kaul, I. and Grunberg, I. eds: The Tobin tax: coping with financial volatility, Oxford University Press.

Umlauf, S. R. (1993) Transaction taxes and the behavior of the Swedish stock market, Journal of Financial Economics, 33, 227-240.

APPENDIX

Table A－1：Sample of the original data

	3 36	1 Date．6． 8	Fise	Whare	Bid Prise $\frac{6}{6}$	BidSixz	Ask＿hise	Act Sise fer	Open	3	High if	（3） 10	\％Acc，Whure ${ }^{\text {a }}$	Traner
2545371	P10TF				8172	27\％）	8.73	雉						
2555978	PMEF	（6）				20		800						
25697	PTFIF					\％${ }^{2}$		510						
251533	PY：F	（6）ILHATME				\＄6		\％						
2565381	PIV：				811	泿	8172	46						
2555338	PT：TF		812	1		而		\＃	2731		1322	㦲家	5300	67604
2545383	STE：	cesilliokel	812	51		－		－	8171		132	3131	15\％1	
256539						103：	817	418						
254535	阶辰					¢		緆						
25559	S	（6JILIH）			877	\＄40		50						
256337	STVT					275								
95150	SY：				8271		8172	56						
25553 m	PIV：	（0．31）				8		48						
25653	P $1=T$		812	1		\％		I	873）		132	闲妳	15．62	$6{ }^{6} 312129$
256581	ST：					SIV	817	45						
2565388	S $1=1$					－		475						
2555938	阶库	（6）				镜		448						
251534	阶位					8 CV		17\％						
251595	PTFTF	（6Julinioke				筑盛	8172	5110						
25153）	PY：TF	（6）LIHitum			Q12	3	8175	488						
2565397	PM：	（0．0171）				27\％	817	H5						
2565388	P $\mathrm{P}_{1}=\mathrm{F}$		8JI：	1		\cdots		号	873 1		132	3135	12．63	
2565939	阶：					4．0		\％						
25650	P1：IF	（6）				K	8731	98						
256531	阶㡽	（6）		！		要宛		稱						
25tine	PPOE					5 E 比	877	445						
25xinis	PYTF	（6Juliniek		E		K0\％		580						
8553］	PY：		812	1		$=$			3711		132	3709	568．	
25651．7	PKF	culimome				S		488						
2565 6	PMTF	（6）				选		5						
2565187	STO	cedillimel		E		5		246						
256518	P1：TF				8171	住昜		迤						
2555	PTVF				8172	27.		7 Cl						
25 5inl	PREF	（6．11）		，		810								
2545111	PMFIF					K0，		级						
256312	PTETF		812	1 İ		三		\cdots	3711		132	3139	3 BLS	

Table A-2: Long memory property of VOL and TO

[^0]: ${ }^{1}$ Tobin (1996) himself writes how his idea has been received since the proposal.
 ${ }^{2}$ The rate was 107.92 on September 12, 2008, and dropped to 89.13 on January 12, 2009 at the Tokyo market closing.
 ${ }^{3}$ The rates are from January 15 through June 30, 2011.
 http://www.oanda.com/lang/ja/currency/historical-rates/
 ${ }^{4}$ Angela Merkel, Nicolas Sarközy and Gordon Brown reportedly mentioned it around the time of the G20 Summit meeting in Pittsburgh in 2009.
 ${ }^{5}$ For instance, economists from all over the United States co-signed "An Open Letter from Economists in Support of Financial Transaction Taxes", in December 2009, which was made public through the Center for Economic Policy Research
 ${ }^{6}$ The IMF published Global Financial Stability Report: Meeting New Challenges to Stability and Building a Safer System right before the G8 Summit meeting in Toronto in 2010.

[^1]: 7 Excerpt from the European Commission website:
 http://ec.europa.eu/taxation_customs/taxation/other_taxes/financial_sector/index_en.htm
 8 These eleven countries are Belgium, Germany, Estonia, Greece, Spain, France, Italy, Austria, Portugal, Slovenia, and Slovakia.

[^2]: 9 There are numerous studies empirically examining the relationship between the transaction tax and stock return volatility. They include, to name a few, Umlauf (1993), Hu (1997), Hayashida and Ono (2010).
 ${ }^{10}$ They could not find the same relationship for the German Mark, however.

[^3]: ${ }^{11}$ The forecast return variance here is a one-step-ahead conditional return variance estimated from a $\operatorname{GARCH}(1,1)$ specification.
 ${ }^{12}$ Defined here to be the difference between the last quoted ask and bid in each interval, and thus different from Ito and Hashimoto's (2006) definition.
 ${ }^{13}$ Exchange rates are defined to be the (last) ask quotes in each interval, and their variances within each interval are used for the volatility measure.

[^4]: 14 The abbreviation for each currency is as follows. USD: the United States Dollar, EUR: Euro, JPY: the Japanese Yen, GBP: the Great Britain Pound, CHF: Swiss Franc, AUD: the Australian Dollar, and ZAR: the South African Rand.
 ${ }^{15}$ In executing ARFIMA estimations, we delete missing data, i.e. intervals in which there is no observation of at least one of these four variables; therefore, the total number of observations used in the actual estimation is smaller.

[^5]: 16 There is a period of roughly 10 minutes where there are no data for every date.

[^6]: 17 The reasons for these mixed results would require further scrutiny, but are left for future investigations.

