※網掛けの科目については、本年度開講しません

	科目名		学期	履修年次	単位	
科目区分		担当者	クラ	ス		索引
基盤教育科目	入門ゼミ	備考				
■教養教育科目		^ W 7	1学期 	1	1	1
■人文・社会	CAR101F	全学科 全教員(○各学科長)				
	技術経営概論		2学期	3	2	
	BUS311F	辻井 洋行 他				2
	経済入門					
	准净入门		1学期	1	2	3
	ECN111F	中岡深雪				
	心と体の健康学		1学期	1	1	
	HSS101F	高西 敏正 他				4
	考え方の基礎		1学期	1	2	
	PHR111F	森本 司				5
	 職業と人生設計		2学期	1	1	
	CAR102F		2 7 % 1	'	'	6
	OAIX1021	光柏 刈性				
	経済入門Ⅱ		2学期	1	2	
	ECN112F	中岡深雪				7
	企業と技術者					
			1学期	2	1	
	CAR201F	辻井 洋行 他 				
	経営入門		2学期	2	2	
	BUS211F	辻井 洋行 				٩
	(A TE 1 DE					
	倫理入門		1学期	2	2	1
	PHR211F	森本 司				'
	日本語の表現技術		1学期/2学期	2	2	
	LIN211F		117/11/217/1			1
		池山 怪게				
	アジア経済		2学期	2	2	
	IRL211F	中岡深雪				1
	ことばとジェンダー		- W MB			
			2学期	2	2	1
	GEN211F	水本 光美				
	工学倫理		1学期	3	2	
	CAR301F	辻井 洋行				1
	企業研究		2学期	3	2	. 4
	CAR302F	辻井 洋行				15

21	科目名		学期	履修年次	単位	
科目区分	備考	担当者	クラ	ラス		索引
基盤教育科目	現代人のこころ		0.377.440		•	
■教養教育科目			2学期 	1	2	16
■人文・社会	PSY003F	村上太郎				
	共生の作法		1学期	1	2	
	LAW001F	高橋 衛 他	1170			17
	LAWOOTI	1月1月1月1日				
	現代社会と新聞ジャーナリズム		1学期	1	2	
	SOC001F	 稲月 正,西日本新聞社				18
	都市と地域		2学期	1	2	
	RDE002F	奥山 恭英				19
	現代の国際情勢		1学期	1	2	
	IRL003F	下野 寿子 他				20
	 グローバル化する経済					
	ノローハルにする紅海		1学期	1	2	21
	ECN001F	田中 淳平 他				21
	 歴史の読み方Ⅱ					
	E 2 0 10 0 0 0 11		1学期	1	2	22
	HIS005F	小林 道彦				
■環境	地球環境システム概論		1学期	1	2	
	ENV103F		1170			23
	LIVE 1001	- 一 ・				
	エネルギー・廃棄物・資源循環概論		2学期	2	2	
	ENV201F	大矢 仁史 他				24
	環境問題特別講義		1学期	1	1	
	ENV100F	森本 司 他				25
	1. 11. 27					
	生物学		1学期	1	2	
	BIO111F	原口 昭				26
	生態子		2学期	1	2	27
	BIO112F	原口 昭				21
	環境マネジメント概論					
	A SO C P S S S S S S S S S S S S S S S S S S		1学期	2	2	28
	ENV212F	松本 亨 他				
			2学期	2	2	
		1-24 46.	2子州	2		29
	ENV211F	加藤 尊秋				
	環境都市論		2学期	2	2	
	ENI/213E	₩ * =	∠ →740			30
	ENV213F	松本 亨				

	科目名		学期	履修年次	単位	
科目区分		担当者	クラ	ス		索引
■基盤教育科目	環境問題事例研究	URI 75	2学期	1	2	
■教養教育科目 ■環境	ENV102F	森本 司 他				31
■外国語教育科目	英語演習					
	ENG100F	筒井 英一郎 他	1学期 	1	1	32
		四月 天 邱 化				
	プレゼンテーションI		1学期	1	1	33
	ENG103F	植田正暢他				
	Intensive English Course		1学期	1	1	
	ENG200F	クレシーニ アン				34
	TOEIC基礎		1学期	1	1	
	ENG120F	三宅 啓子				35
	TOEIC応用		2学期	1	1	
	ENG220F	三宅を登子	2770	'	'	36
	女 五 字 羽 1					
	英語演習Ⅱ		2学期	1	1	37
	ENG110F	木山 直毅 他				
	プレゼンテーションII		2学期	1	1	
	ENG113F	プライア ロジャー 他				38
	TOEIC I		1学期	2	1	
	ENG221F	岡本 清美 他				39
	科学技術英語		1学期/2学期	2	1	
	ENG241F	木山 直毅 他				40
	TOEIC II		2学期	2	1	
	ENG222F	岡本清美他				41
	科学技術英語II		2学期	2	1	
	ENG242F	プライア ロジャー 他				42
	Basic R/W I		1学期	2	1	
	ENG203F	柏木 哲也 他				43
	Basic R/W I		1学期	2	1	
	ENG203F	富永 美喜				44
	Discussion and Debate		2学期	2	1	
	ENG204F	プライア ロジャー 他				45

科目区分	科目名		学期	履修年次	単位	索引
14日区21	備者	担当者	クラ	ラス		1C 345
基盤教育科目	English Communication		1学期	2	1	
■外国語教育科目	ENG205F	クレシーニ アン 他			•	46
		707 = 77 18				
	Scientific R/W I		1学期	2	1	
	ENG243F	柏木 哲也 他				47
	Basic R/W II					
	İ		2学期	2	1	48
	ENG213F	柏木 哲也 他 				
	Basic R/W II		2学期	2	1	
	ENG213F	富永 美喜				49
		田小八日				
	English Presentation		1学期	2	1	
	ENG214F	クレシーニ アン 他				50
	Extensive Deading					
	Extensive Reading		2学期	2	1	51
	ENG215F	<u>岡本清美他</u>				31
	Scientific R/W II		2学期	2	1	
	ENG244F	+++ += += /h	2子州	2	'	52
	ENG244F	柏木 哲也 他				
	Academic Writing		1学期	3	1	
	ENG303F	プライア ロジャー				53
	Topic Studies A		2学期	3	1	
	ENG313F	柏木 哲也				54
	Topic Studies B		2学期	3	1	
	ENG314F	筒井 英一郎				55
	Topic Studies C		2学期	3		
	ENG315F	□ + 注	2子州		1	
	ENGOIDE	岡本 清美 				
	Topic Studies D		2学期	3	1	
	ENG316F	植田正暢				
専門教育科目	物理実験基礎		1学期	1	2	
■工学基礎科目	PHY101M	金本 恭三 他				56
	微分・積分		1学期	1	2	
	MTH102M	山本 勝俊				57
	^{──} 刑又 し 子 		1学期	1	2	58
	CHM100M	天野 史章) 36

NDEA	科目名		学期	履修年次	単位	± -1
科目区分		担当者	クラ	· ス		索引
■専門教育科目	化学実験基礎	בי אוע	2学期	1	2	
■工学基礎科目	CHM101M		21741			59
		7 W 76 H				
	微分方程式		2学期	1	2	60
	MTH106M	朝見 賢二 他				00
	基礎有機化学		1学期	1	2	
	CHM120M					61
	# 7# fm 144 /1, 24					
	基礎無機化学	_	2学期	1	2	62
	CHM130M	山本勝俊				02
	力学基礎		2学期	1	2	
	PHY140M	西谷 龍介				63
	7th th: =∆					
	確率論	_	2学期	1	2	64
	MTH101M	情報システム工学科全教員(○学科長)				
	一般物理学		1学期	1	2	
	PHY100M	伊藤 洋				65
	線形代数					
			1学期	1	2	66
	MTH110M	野上 敦嗣				
	化学熱力学		2学期	1	2	
	CHM110M	秋葉 勇				67
		1 Nm - Nt	2学期 	1	2	68
	BIO110M	中澤 浩二				
	基礎化学工学		1学期	2	2	
	CHM260M	上江洲 一也				69
	環境統計学				_	
			1学期 	2	2	70
	ENV210M	加藤 尊秋 他				
■専門科目	物理化学実験		1学期	2	4	
	CHM280M	朝見 賢二 他				71
	 化学平衡と反応速度		* 777 fil e		^	
	CHM211M	知目 取一	1学期 	2	2	72
		朝見賢二				
	有機化学I		1学期	2	2	
	CHM221M	李 丞祐				73
		李 丞祐	1学期	2	2	

	科目名		学期	履修年次	単位	+-
科目区分		担当者	ク:	ラス		索引
	無機化学	川 / 1	4 XX #B	2	2	
■専門科目	CHM231M	A # # # 4	1学期	2	2	74
	CHIVIZSTIVI	今井 裕之				
	化学産業技術論		1学期	2	2	
	CHM290M	飯田 汎				75
	有機化学実験		2学期	2	4	
	CHM281M	秋葉 勇 他				76
	 分析化学		0 W ##		•	
			2学期 	2	2	77
	CHM241M	吉塚 和治				
	化学工学		2学期	2	2	
	CHM261M	 山本 勝俊				78
	環境分析実習		1学期	3	4	
	CHM180M	吉塚 和治 他				79
	物理化学演習					
			1学期	3	1	8
	CHM312M	朝見賢二他				
	有機化学演習		1学期	3	1	
	CHM320M	秋葉 勇 他				8
		V 25 10				
	反応工学		1学期	3	2	
	СНМ360М	西浜 章平				8:
	万龍工 字 		1学期	3	2	8:
	CHM361M	西浜 章平				0,
	大気浄化工学		4 24 HB	2	2	
		#W 84	1学期 	3	2	84
	ENV332M	藍川 昌秀				
	構造化学		1学期	3	2	
	CHM310M	黎 暁紅				8
	d the label and					
	先端材料工学 		1学期	3	2	
	CHM350M	李 丞祐 他				8
	機器分析					
		_	1学期 	3	2	8
	CHM342M	<u> </u>				
	環境分析化学		1学期	3	2	
	CHW341M	閸∟ 蒸虾+	1 7 70	3		8
	CHM341M	門上希和夫				

21.5	科目名		学期	履修年次	単位	
科目区分	備考	担当者	ク:	ラス		索引
専門教育科目	資源循環工学		1学期	3	2	
■専門科目	ENV333M	安井 英斉 他			_	89
		301 301 10				
	エネルギー循環化学実習		2学期	3	4	90
	CHM380M	西浜 章平 他				90
	無機・分析化学演習		2学期	3	1	\vdash
	CHM331M	今井 裕之 他				9
	ルガーが声型					_
	化学工学演習		2学期	3	1	٤
	CHM364M	大矢 仁史 他				
	電気化学		2学期	3	2	\vdash
	CHM311M	吉塚 和治 他				٩
	h+ l++ >\frac{1}{2}				I	<u> </u>
	触媒工学		2学期	3	2	
	CHM362M	天野 史章				,
	エネルギー化学プロセス		2学期	3	2	T
	CHM363M	 黎 暁紅				- !
	÷ 0.7 // W					L
	高分子化学		1学期	3	2	
	CHM340M	秋葉 勇				
	地圏環境論		2学期	3	2	T
	ENV331M	伊藤 洋				
	·····································					╀
	水処理工学		1学期	3	2	
	ENV330M					
	生物化学		1学期	2	2	T
	BIO220M	 河野 智謙				
	/+= ±+ 1 W					L
	統計熱力学		2学期	2	2	1
	CHM212M	櫻井 和朗				
	分子生物学		2学期	2	2	T
	BIO221M	木原 隆典				1
	AH 14- // N/					L
	錯体化学		2学期	2	2	1
	CHM233M	礒田 隆聡				
	環境政策概論		2学期	2	2	T
	ENV220M	藤山 淳史	- 1 /41		_	1

a	科目名		学期	履修年次	単位	±
科目区分		担当者	クラ	·ス		索引
 ■専門教育科目	有機化学Ⅱ	備考	0.24.40			
■専門科目	CHM222M	### ≠n èo /u-	2学期 	2	2	104
	CHIVIZZZIVI	櫻井 和朗 他				
	環境計画学		1学期	3	2	
	ENV320M					105
	Alle de de St					
	微生物学		1学期	3	2	106
	BIO310M	森田洋				100
	生態工学		2学期	3	2	
	BIO311M	原口 昭	2于和	3		107
	BIOSTIW	原口 咱				
	生物工学		2学期	3	2	
	BIO330M	中澤 浩二				108
	遺伝子工学					
	退伍于工子		2学期	3	2	109
	BIO320M	木原 隆典				109
	環境シミュレーション		2学期	3	2	
	ENV310M		2于初	3		110
	LINVOTOWI	新工 教嗣				
	環境リスク学		2学期	3	2	
	ENV321M	二渡了他				111
■卒業研究	卒業研究		通年	4	8	
	STH410M	エネルギー循環化学科全教員(○学科長)				112
	卒業研究【基盤】		通年	4	8	
	STH410M	基盤教育センターひびきの分室教員	· - ·			113
■留学生特別科目■基盤・教養教育科目(人文・社会	日本事情		1学期	1	1	
TEM MEMBERS (NA PER	JPS100F	池田 隆介				114
■基盤・外国語教育科目読替	総合日本語A		. 337.44=		_	
		N	1学期 	1	2	115
	JSL100F	<u>池田 隆介</u>				
	総合日本語B		2学期	1	2	
	JSL110F	 池田 隆 介				116
	4.1° 0 4 = 4 = 4					
	技術日本語基礎		1学期	2	1	447
	JSL230F	池田隆介				117
	ビジネス日本語		2学期	3	1	
		水本 光美	2子州	3		118
	JSL340F	小平 尤美				

科目区分	科目名		学期	履修年次	単位	索引
村日区ガ		担当者 担当者 横考	クラス	Z.		※51
■補習	補習数学		1学期	1		110
		荒木 勝利,大貝 三郎,藤原 富美代				119
	補習物理		1学期	1		400
		平山 武彦,衛藤 陸雄,池山 繁成				120
	補習化学		1学期	1		
		溝部 秀樹				121

入門ゼミ

(Introductory Seminar)

担当者名 全学科 全教員(○各学科長)

/Instructor

履修年次 1年次 単位 1単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2013 2014 2015 2016 2018 2008 2009 2010 2011 2012 2017 2019 \circ \circ 0 Ο O \circ

対象学科

【必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授·	与方針における能力		到達目標
知識・理解	総合的知識・理解	•	問題の発見やその解決策を導くために必要な考え方や取り組み方を修得する。
	情報リテラシー		
技能	数量的スキル		
	英語力		
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力		
	コミュニケーション力	•	社会生活に必要な「聞く力」「理解する力」「話す力」「調べる力」「書く力」を修得する。

入門ゼミ CAR101F

授業の概要 /Course Description

大学生にとってコミュニケーション能力は、専門的な知識を修得する以前に身に付けておくべき、基礎的な能力である。この入門ゼミでは、グループワークなどを通して、他者の意見を聞き、その人の言いたいことを理解した上で、自分の意見を伝えることができる力(「理解する力」「話す力」)、そして情報を収集して、レポート、報告書を作成する力(「調べる力」、「書く力」)を養成することを目的とする。また、学生が受動的ではなく能動的にグループワーク・情報収集等に取り組むことによって、問題解決能力を高め、自ら学ぶ力を養成することを目的とする。

教科書 /Textbooks

担当教員の指示したもの

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

担当教員の指示したもの

授業計画・内容 /Class schedules and Contents

- (1)15週のうち、最初の1週は新入生全員を対象にガイダンスを実施する。
- (2) 2週目以降は、原則としてゼミ単位での活動とする。詳細については、担当教員の指示に従うこと。

成績評価の方法 /Assessment Method

授業への取り組み態度を評価する(100%)

事前・事後学習の内容 /Preparation and Review

担当教員の指示に従い、ゼミの内容に応じた予習および復習を行うこと。

履修上の注意 /Remarks

入学時のガイダンスで配布されるテーマ一覧を参考に、希望するゼミを検討しておくこと。また、希望者は他の学科が提供するゼミに参加する こともできる。

担当者からのメッセージ /Message from the Instructor

大学生になった皆さんは、既に大人社会の仲間入りをしています。大人社会では、あらゆる事象において受身の体勢では、うまくいかない事が 増えてきます。積極的にコミュニケーションを図る、貪欲に情報を収集する、自分の意見をしっかり持ち、常に問題意識を持つ、相手の立場を 理解し協調性を養うことが重要となります。そのような魅力ある学生になれるよう頑張ってください。

キーワード /Keywords

コミュニケーション,情報

技術経営概論

(Introduction to Technology Management)

辻井 洋行 / Hiroyuki TSUJII / 基盤教育センターひびきの分室, 岡 秀樹 / OKA Hideki / 非常勤講師

/Instructor

履修年次 3年次 単位 2単位 学期 2学期 授業形態 演習 クラス /Credits /Semester /Class Format /Class /Year

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

 \circ

O

Ο

O

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位报	気与方針における能力			到達目標	
知識・理解	総合的知識・理解				
	情報リテラシー				
技能	数量的スキル				
	英語力				
思考・判断・表現	課題発見・分析・解決力		技術を基盤とした新規事業展開に関 うになる。	別わる課題を把握し、創造的な解決策を	構想できるよ
	自己管理力				
	社会的責任・倫理観				
関心・意欲・態度	生涯学習力	•	常に、新しい社会・経済と技術動向	に関心を向けられるようになる。	
	コミュニケーション力	•	チームで討議しながら資料をまとめる。)、プレゼンテーション能力を向上させ	ることができ
	·		·	147549344954	51100445

技術経営概論 BUS311F

O

授業の概要 /Course Description

この授業科目の目的は、工学技術を学び利活用する素養を持つ学生が、日常生活の小さな不便・不都合をヒントに、課題を見つけ出し、ビジ ネスとして解決していくための発想法や、アイデア創出の観点を学びます。さらには、事業の継続や発展に必要な経営の考え方についても実務 家から学びます。このように、工学系の学生がスタートアップのための基本的なコンセプトを学び、ひと通りの形として完成させるプロセスを 経験する中で、主体的に地域の社会問題を解決するような起業家精神(アントレプレナーシップ)を学ぶとともに、ひとつでも多くの実現可能 なビジネスプランの創出を目指します。

達成目標

(履修者は、)

(a)社会における自身の存在価値を改めて理解し、個人が社会課題への取り組み、付加価値をもたらすことの意義に関する気づきを得て、自身の 問題意識を根拠とするビジネス・スタートアップのモデルを作り上げる。

- (b)提案するビジネス·スタートアップ·モデルを社会の文脈の中で意味を与え、説明できる。
- (c)授業での講義やビジネスプランニングを通じた学びについて、振り返り自分の言葉で説明できる。

教科書 /Textbooks

配布資料による。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

配布資料による。

授業計画・内容 /Class schedules and Contents

- 1 (第1週)マインドセット、物事を考える姿勢をつくる、身近な課題に目を向ける
- 2 (第2週)問題設定と観点;先行事例資料の整理、調査事例の発表
- 3(第3週)ビジネスプランの構想方法、ビジネスプランの素案作成、聞き手の共感を引き出すスピーチ法
- 4 (第4週)ビジネスプラン(1次案)の発表会、 ビジネスプランの練り直し
- 5 (第5週)ビジネスにおけるお金の流れ;マネタイズ・ファイナンス問題、ビジネスプランの練り直し
- 6 (第6週)ビジネスプラン(2次案)の発表会、ピアレビューによる意見募集・事業連携の可能性探求、最終発表準備
- 7 (第7週)外部審査員を含めたビジネスプラン(3次案)の最終発表会
- ※各週の授業は、木曜5·6限連続で行う。(およそ10月から11月の間に授業は終了する予定。変更の可能性あり。)
- ※最終週の発表会は、コワーキングスペース秘密基地(小倉北区京町2-2-19)で行い、広くスタートアップ志向の起業家に対してプレゼンテー ションする。

技術経営概論

(Introduction to Technology Management)

成績評価の方法 /Assessment Method

達成目標(a):スタートアップ企画書と提案 [50%]

達成目標(b):プレゼンテーション[30%] 達成目標(c):振り返りカード [20%]

事前・事後学習の内容 /Preparation and Review

- ・授業開始前から、面白いと感じるビジネスについて情報を集め、メモを取っておきましょう。
- ・授業終了後も、世の中のビジネスがどう動いているのかについて関心を持ちましょう。

履修上の注意 /Remarks

自分の好きなことを考える時間は楽しいものです。授業外の活動も必要になりますが、好きなことをビジネスにする演習授業なので、能動的に 夢を持って取組みましょう。授業に参加している他の履修者によるビジネスモデルからも多くを学びとり、自分の提案の糧にしましょう。

担当者からのメッセージ /Message from the Instructor

自分自身を軸として、世の中と関わりながら、必要な仕事を自分で作っていくという考え方や態度が身につき、自信を高められる授業になります。昨年度の先輩たちと同じく、自分にもできそうだ!と思えることが必ず見つかります。

キーワード /Keywords

スタートアップ、ビジネス・モデル、Business Boot Strapping

経済入門I

(Introduction to Economics I)

担当者名 中岡 深雪 / Miyuki NAKAOKA / 基盤教育センターひびきの分室

/Instructor

履修年次 1年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2008 2009 2010 2011 2012 2013 2015 2016 2017 2018 2019 \circ O \circ O O Ο

対象学科

【必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	-方針における能力		到達目標
知識・理解	総合的知識・理解	•	社会科学を学ぶ際に必要な基礎知識が身につく。
	情報リテラシー		
技能	数量的スキル	•	人間の行動を数式によって表現することができる。
	英語力		
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力	•	自身を取り巻く環境について熟考し、適応する能力が身につく。
	コミュニケーション力		

経済入門 I ECN111F

授業の概要 /Course Description

本講義では下記のテキストを使用し、ミクロ経済学の基礎的な内容を学習する。普段私たちがとっている消費行動(需要)、企業の生産行動(供給)、そして需要と供給の出会う「市場」の理論を学習する。経済学を学ぶことで、身の回り、または現代の日本や世界で起こっている様々な経済現象に関心を持ってほしい。授業では適宜時事問題も扱い、経済問題に対する理解も深める。

教科書 /Textbooks

前田純一著『経済分析入門I - ミクロ経済学への誘い - 』晃洋書房、2011年、2.500+税円。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

藤田康範『ビギナーズミクロ経済学』ミネルヴァ書房、2009年

○三橋規宏·内田茂男·池田吉紀著『ゼミナール日本経済入門 改訂版』日本経済新聞出版社、最新版

授業計画・内容 /Class schedules and Contents

- 1 イントロダクション
- 2 第1章 消費行動の分析(1)一無差別曲線によるアプローチー(予算制約)
- 3 第1章 消費行動の分析(1)一無差別曲線によるアプローチー(無差別曲線)
- 4 第1章 消費行動の分析(1)一無差別曲線によるアプローチー(最適消費点と需要曲線)
- 5 第2章 消費行動の分析 (2)一効用関数によるアプローチー(限界効用)
- 6 第2章 消費行動の分析 (2) 一効用関数によるアプローチー(限界代替率)
- 7 第2章 消費行動の分析(2)一効用関数によるアプローチー(需要の弾力性)
- 8 第3章 生産行動の分析(1)一費用分析によるアプローチー(費用曲線)
- 9 第3章 生産行動の分析(1)一費用分析によるアプローチー(損益分岐点、企業閉鎖点)
- 10 第4章 生産行動の分析(2)一生産関数によるアプローチー
- 11 第5章 完全競争市場の分析(完全競争市場)
- |12 第5章 完全競争市場の分析(価格、数量による調整)
- 13 第6章 資源配分の効率性
- 14 第7章 独占市場の分析
- 15 まとめ

成績評価の方法 /Assessment Method

期末試験 60%

課題実施状況や授業への積極性40%

事前・事後学習の内容 /Preparation and Review

授業開始前にはテキストを読んで予習し、不明点をあらかじめ明らかにしておくこと(アンダーラインをひくなどして、具体的に示しておくこ と)。授業終了後は学習内容の復習をすること。

基盤教育科目 教養教育科目 人文・社会

経済入門I

(Introduction to Economics I)

履修上の注意 /Remarks

普段より経済に関する新聞記事やニュースに関心を払ってほしい。

担当者からのメッセージ /Message from the Instructor

受講生の理解度に応じて授業の進度を調節することがあります。経済学の勉強を通じて世の中に対する関心を高め、社会に出た時にものおじせず、自分の意見を発言できるようになりましょう。またニュースや記事などから経済事情を読み解き、判断することは理系出身の学生にも求められることです。授業で扱うテーマ以外にも経済に関することなら質問を歓迎します。図書館に収蔵されている関連書籍等積極的に触れるようにしましょう。一緒に経済を勉強していきましょう、世界が広がるはずです。

キーワード /Keywords

経済 需要 供給 市場 日本経済

心と体の健康学

(Psychological and Physical Health)

担当者名 高西 敏正 / 人間関係学科, 柴原 健太郎 / KENTARO SHIBAHARA / 人間関係学科

/Instructor 乙木 幸道 / Kodo OTOKI / 非常勤講師

履修年次1年次単位1単位学期1学期授業形態演習クラス/Year/Credits/Semester/Class Format/Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance \circ \circ \circ O O Ο

対象学科 【必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力				到達目標
知識・理	解	総合的知識・理解		
		情報リテラシー		
技能		数量的スキル		
		英語力		
思考・判	断・表現	課題発見・分析・解決力		
		自己管理力	•	身体とメンタルの状況を把握し、自ら改善することができる。
		社会的責任・倫理観		
関心・意		生涯学習力	•	年齢の進行に応じた身体とメンタルのケアに必要な情報を自ら得ることができる。
		コミュニケーション力	•	身体とメンタルの状態について、他者とやりとりをしながら把握し、協力して改善する ことができる。

心と体の健康学 HSS101F

授業の概要 /Course Description

将来にわたって心と体の健康を自ら維持・向上させていくための理論や方法を体系的に学ぶことが、この科目の目的である。 生涯続けられるスポーツスキルを身につけ、心理的な状態を自ら管理する方法を知ることで、こころやからだのバランスを崩しがちな日々の 生活を自分でマネジメントできるようになることを目指す。

教科書 /Textbooks

適宜資料配付

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

なし

授業計画・内容 /Class schedules and Contents

- 1回オリエンテーション
- 2回コミュニケーションゲーム①(グループワーク)
- 3回コミュニケーションゲーム②(カラダを使って)
- 4回ボディマネジメント①(身体的健康と精神的健康)
- 5回ボディマネジメント②(体力の概念)
- 6回ボディマネジメント③(体力・身体測定・:体育館)
- 7回メンタルマネジメント①(基礎)
- 8回メンタルマネジメント②(目標設定①:積極的傾聴・合意形成・会議力)
- 9回メンタルマネジメント③(目標設定②:コミュニケーション・ファシリテーション・組織論)
- 10回メンタルマネジメント④(目標設定③:ワークショップ・主体的参加)
- 1 1回エクササイズ①(オリエンテーリング)
- 12回エクササイズ②(屋内個人スポーツ:体育館)
- 13回エクササイズ③(屋内集団スポーツ:体育館)
- 14回エクササイズ④(屋外スポーツ:グラウンド)
- 15回まとめ

成績評価の方法 /Assessment Method

授業への取り組み態度 60% レポート 20% 試験 20%

事前・事後学習の内容 /Preparation and Review

授業で得た知識や実践を各自活用し、授業内容を反復すること

心と体の健康学

(Psychological and Physical Health)

履修上の注意 /Remarks

[コミュニケーションゲーム][エクササイズ]は身体活動を伴うので、運動できる服装ならびに靴を準備すること。

[ボディマネジメント①・②]は教室での講義、[ボディマネジメント③]は体育館で行う。

[メンタルマネジメント]はワークを中心とした授業を行いますので筆記用具を持参すること。

授業への積極的な参加を重視します。

担当者からのメッセージ /Message from the Instructor

本科目を通して、「やりたいこと」「やるべきこと」「できること」を整理し、いかに目標を明確にするかを学び、自分自身の生活にも役立てほしい。さらに、身体活動の実践を通して、スキル獲得のみならず仲間作りやノンパーバルコミュニケーション能力獲得にも役立ててほしい。

キーワード /Keywords

考え方の基礎

(Basic Ways of Thinking)

/Year of School Entrance

担当者名 森本 司 / Tsukasa MORIMOTO / 基盤教育センターひびきの分室

/Instructor

履修年次1年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class

対象学科 【選択】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

 \circ

O

 \circ

O

O

O

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標	
知識・理解	総合的知識・理解			
	情報リテラシー	·	その場にふさわしい情報利用の仕方の基礎が身につく。	
技能	数量的スキル			
	英語力			
思考・判断・表現	課題発見・分析・解決力●	▶ f	問題を言葉で適切に表現し、解決のための情報共有をすることができる。	
	自己管理力			
	社会的責任・倫理観			
関心・意欲・態度	生涯学習力			
	コミュニケーション力	•	現実と言葉の対応、言葉と言葉の論理的対応の基礎が身につく。	
	•			

考え方の基礎 PHR111F

授業の概要 /Course Description

- ・問題解決のプロセスには,言葉を使った作業を必ず必要とします。特に,グループによって問題解決に関わる作業をする場合には,言葉による伝達ばかりではなく,議論そのものを活発にする力が求められます。その力を身につけるためには,言葉に関する二種類の学習が必要です。 一つは,言葉の基本性質を理解し,言葉の情緒機能の働きを学習することです。もう一つは,言葉の論理的な働きを身につけるための学習です
- 。この講義では、二種類の言葉の学習を通じて考える力を高めることを目的としています。

授業に当たっては、予習・復習を課します。授業中に、毎回配布プリントにノートを作り、授業終了時に提出してもらいます(評価対象)。また 、前半では小テストを数回行います。

また、F再履修受講学生には毎週課題を提出してもらいます。

前半 思考と行動における言語(小テスト)教科書を使用

後半 論理トレーニング(論理課題練習)問題プリントを配布

教科書 /Textbooks

『思考と行動における言語』、S.I.ハヤカワ、岩波書店

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

『新版・論理トレーニング』、野矢茂樹著、産業図書

『議論のレッスン』、福澤一吉、NHK生活人新書

『論理表現のレッスン』、福澤一吉、NHK生活人新書

授業計画・内容 /Class schedules and Contents

1回目 履修説明+評価の仕方と問題解決の考え方、問題解決と言語

2回目 言語と生存、記号過程

3回目 報告・推論・断定

4回目 文脈と意味

5回目 言語の情緒的意志的機能

6回目 私たちはどうやって知るか(定義とは)

7回目 抽象と分類

8回目 二値的と多値的(まとめと補足)

9回目 論理トレーニング1(接続表現①論理問題の練習の仕方)

10回目 論理トレーニング2(接続表現②応用問題)

11回目 論理トレーニング3(議論の骨格①議論の構造図の作成)

12回目 論理トレーニング4(議論の骨格②応用問題)

13回目 論理トレーニング5 (論証の練習①論証図の作成)

14回目 論理トレーニング6(論証の練習②応用問題)

15回目 論理トレーニング7(論理トレーニングまとめ)

考え方の基礎

(Basic Ways of Thinking)

成績評価の方法 /Assessment Method

- ・前半にノートチェック及び小テスト 30%
- ・前半内容に関するレポート 20%
- ・後半にノートチェック 30%
- ・後半に論理課題 20%

事前・事後学習の内容 /Preparation and Review

- ・授業中に該当箇所について、学生に課題を指示します。あらかじめ該当箇所についてテキストを読んできてもらいます。
- ・授業中に復習テストを行います。授業後に、学習した内容をまとめ、ノートを作成してください。

履修上の注意 /Remarks

- ・前半:授業中に予習・復習の確認をします。また、復習のための確認テストを数回行います。また、授業中に作成したノートを毎回提出して もらいます。
- ・後半:授業中に問題を配付し、解答作業を行います。作業内容を確認するため、配布プリントを提出してもらいます。
- ・前半も後半も、授業中にメモの取り方を勉強してください。メモを基にして学習内容を自分の言葉で表現できるようにしてください。

担当者からのメッセージ /Message from the Instructor

・言葉の使用について、感覚と論理とを連携させて、少しずつ自分の言葉で表現できるようにしましょう。表現の練習が自分の世界を作る基礎になります。

キーワード /Keywords

言語と現実、報告・推論・断定、意味、分類、論理トレーニング

職業と人生設計

(Career and Life Planning)

担当者名 見舘 好隆 / Yoshitaka MITATE / 地域戦略研究所

/Instructor

履修年次 1年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Credits /Semester /Class Format /Class /Year

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance \circ O Ο O O

対象学科 【必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	-方針における能力		到達目標	
知識・理解	総合的知識・理解			
	情報リテラシー			
技能	数量的スキル			
	英語力			
思考・判断・表現	課題発見・分析・解決力			
	自己管理力	•	キャリア設計を自ら行うことができる。	
	社会的責任・倫理観			
関心・意欲・態度	生涯学習力	•	キャリア設計を必要に応じて再編することができる。	
	コミュニケーション力	•	キャリア設計において、必要な相談を他者と交わすことができる。	

職業と人生設計 CAR102F

O

授業の概要 /Course Description

<目的>

我が国は少子高齢化に対峙し、生産年齢人口をカバーすることが急務となっています。その対策のため、未就業の状態にある人々の就業支援や 、外国人労働者の受け入れに加え、近年注目されているのがRPA(Robotic Process Automation)です。RPAとは、ロボットによる業務自動化の 取り組みを表す言葉で、「デジタルレイバー(Digital Labor)」や「仮想知的労働者」とも言い換えられ、人間の知能をコンピューター上で再現 しようとするAIや、AIが反復によって学ぶ「機械学習」といった技術を用いて、主にバックオフィスにおけるホワイトカラー業務の自動化を指 します。つまり、従来の高度成長時代に基本を置く、一般的なコミュニケーション能力や主体性、チームワークなどの力の習得だけでなく、「 AIやロボットには代替されない力」の習得が大学に課せられていると言えるでしょう。

では、その「AIやロボットには代替されない力」とは何でしょうか。それはAIやロボットにはできない「多様な人々と恊働しながら、答えの無 い課題を解決する力」です。本授業の目的は、近年の社会情勢において必要される、卒業後社会で持続的に学び、生き抜く力、つまり自らのキ ャリアをプランニングする力の習得を目的とします。

<目標>

通常授業および、企業団体からの課題をグループで挑戦することで、「多様な人々と協働する力」と「答えの無い課題を解決する力」を身に付 けることを目標とします。前者の評価は主に通常授業におけるクラスメイト同士の相互評価にて、後者の評価は主に企業団体からの評価によっ て採点します。そして最後に本授業での学びを、本授業以外にて実践し、身に付けているかどうかを最終レポートにて採点します。

教科書 /Textbooks

テキストはありません。適宜資料をMoodleにアップしますので、印刷して精読し、持参してください。特に事前課題が含まれる時には、その課 題をこなしていないと授業に参加できませんので注意してください。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

事前に提示する課題をもとに、各自登壇企業団体のホームページの閲覧および企業団体訪問、統計資料の収集、アンケートの収集、インタビュ 一など行い、中間および最終発表の準備をしてください。

また、以下書籍を参考にしてください。

- ○ジェームス W.ヤング『アイデアのつくり方』CCCメディアハウス
- ○嶋浩一郎『嶋浩一郎のアイデアのつくり方』ディスカヴァー・トゥエンティワン』
- ○加藤昌治『考具 考えるための道具、持っていますか?』CCCメディアハウス
- 〇加藤昌治『チームで考える「アイデア会議」 考具 応用編』CCCメディアハウス
- ○香取 一昭・大川 恒『ワールド・カフェをやろう!』日本経済新聞出版社
- ○大嶋祥誉『マッキンゼー流入社1年目問題解決の教科書』SBクリエイティブ

大嶋祥誉『マンガで読める マッキンゼー流「問題解決」がわかる本』SBクリエイティブ

スプツニ子!『はみだす力』宝島社

職業と人生設計

(Career and Life Planning)

授業計画・内容 /Class schedules and Contents

- 1回 全体ガイダンス
- 2回 新しい仕事を創る
- 3回 振り返りの仕方
- 4回 コミュニケーション技法①傾聴
- 5回 コミュニケーション技法②アサーション
- 6回 課題提示、課題解決の手法
- 7回 コミュニケーション技法③打ち合わせ
- 8回 課題解決の仕方①大学院生登壇
- 9回 課題解決の仕方②社会人登壇
- 10回 企業団体課題の中間発表
- 11回 相談会
- 12回 プレゼンテーション技法
- 13回 ケーススタディワーク
- 14回 企業団体課題の最終発表
- 15回 自らのキャリアをプランする

成績評価の方法 /Assessment Method

毎回の授業への取り組み(予習・復習・メンバーからの相互評価)・・・70% 最終発表に対する評価(企業団体からの評価とメンバーからの相互評価)・・・20% 最終レポート・・・10%

事前・事後学習の内容 /Preparation and Review

<通常授業>Moodleに予習・復習を掲示しますので毎週締め切りまでに行ってください。

<企業団体課題>事前に提示する課題をもとに、各自登壇企業団体のホームページの閲覧および企業団体訪問、統計資料の収集、アンケートの収集、インタビューなど行い、中間および最終発表の準備をしてください。また、授業終了後は指定するフォームにて振り返りを行ってください。

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

就職活動がほぼ自由化され、以前のように3年生の秋から一斉スタートではなくなりました。そのために、夏季や春季の長期休暇などを活用したインターンシップや、長期の地域活動・ボランティア活動などが、将来の見通しを見出すために重要なファクターとなります。よって、できるだけ早くそれらに挑戦してほしいのですが、そもそも「何がやりたいのか?」がわからなければ、探すことも選ぶこともできません。ゆえに、「授業の中」に企業団体の課題に取り組む機会を作り込み、現場の仕事を体感することで、多くの学生が働くことをイメージすることを狙って設計した授業です。企業団体の方から、直接フィードバックをもらえる機会はなかなかありません。本授業での経験を手掛かりに将来の見通しのヒントを得て、そのヒントを今後の大学生活における学業や課外活動への取組に活かすことを切に願っています。

キーワード /Keywords

キャリア、成長、プレゼンテーション、フィールドリサーチ、マーケティング、クリエイティブシンキング、ロジカルシンキング、問題解決、 課題解決、実務経験のある教員による授業

経済入門Ⅱ

(Introduction to Economics II)

担当者名 中岡 深雪 / Miyuki NAKAOKA / 基盤教育センターひびきの分室

/Instructor

履修年次 1年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2

 対象入学年度
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019

 Year of School Entrance
 0
 0
 0
 0
 0
 0
 0
 0

対象学科 【選択】 エネルギー循環化学科, 機械システム工学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標	
知識・理解	総合的知識・理解	•	各国経済の歴史、現状について説明することができる。	
	情報リテラシー			
技能	数量的スキル ●	•	経済の変化を数量的に説明することができる。	
	英語力			
思考・判断・表現	課題発見・分析・解決力			
	自己管理力			
	社会的責任・倫理観			
関心・意欲・態度 	生涯学習力●	•	経済について関心を持ち続け、自身の意見を述べることができる。	
	コミュニケーション力			

経済入門I ECN112F

授業の概要 /Course Description

本科目では現代社会における経済事象について理解を深める。私たちが生活している現代はどういった経済状況にあるのか。またどのような問題が発生しているのだろうか。社会問題から身近な経済事情まで幅広く扱い、経済に関する知識を獲得する。同時に多様な経済事象を題材に背景、因果関係を考える力を養う。まず、これまで日本経済がたどってきた経緯を知ることから始める。そして日本のみならず海外の経済事情についても理解を深める。適宜時事問題も扱い、経済への関心を高める。

教科書 /Textbooks

特に指定しない。授業中に適宜プリントを配布する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

三橋 規宏 (著)、内田 茂男 (著)、 池田 吉紀 (著)『ゼミナール日本経済入門』 日本経済新聞出版社 金森 久雄 (編集)、 加藤 裕己 (編集)、 香西 泰 (編集)『日本経済読本』 東洋経済新報社

授業計画・内容 /Class schedules and Contents

- 1 イントロダクション
- 2 戦後日本経済の年表を作成する
- 3 GHQの戦後改革による日本社会の変化
- 4 高度経済成長とは
- 5 高度経済成長のメカニズム
- 6 高度経済成長の終焉
- 7 安定成長期
- 8円高がもたらす影響
- 9 プラザ合意が日本経済にもたらした変化
- 10 バブルの発生と崩壊
- 11 失われた10年
- 12 2008年の世界金融危機
- 13 アメリカ経済
- 14 ヨーロッパ経済
- 15 まとめ

成績評価の方法 /Assessment Method

期末試験50%

小テスト、課題や授業への積極性50%

事前・事後学習の内容 /Preparation and Review

授業開始前は事前に配布するプリントで予習をすること。授業終了後は授業で使用したプリント、課題で復習すること。

基盤教育科目 教養教育科目 人文・社会

経済入門II

(Introduction to Economics II)

履修上の注意 /Remarks

日常より新聞を読む、ニュースを見るなどして経済問題に関心を払ってほしい。

担当者からのメッセージ /Message from the Instructor

気になる経済問題について楽しく学びましょう。

キーワード /Keywords

経済 日本経済 グローバリゼーション アメリカ

企業と技術者

(Business and the Engineer)

担当者名 辻井 洋行 / Hiroyuki TSUJII / 基盤教育センターひびきの分室, 長 弘基 / Hiroki CHO / 機械システム工学科

/Instructor (19~)

玉田 靖明 / Yasuaki TAMADA / 情報システム工学科 (19~)

履修年次 2年次 単位 1単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

	学位授与方針における能力			到達目標	
知識・	理解	総合的知識・理解			
		情報リテラシー			
技能		数量的スキル			
		英語力			
思考・	判断・表現	課題発見・分析・解決力			
		自己管理力	•	技術者としてのキャリア設計に必要な情報を自ら選び取ることができる。	
B.用. 2	意欲・態度	社会的責任・倫理観			
	AIAN AIAN	生涯学習力			
		コミュニケーション力	•	技術者の仕事に興味を持ち、適切な質問をすることができる。	

企業と技術者 CAR201F

授業の概要 /Course Description

この授業の目的は、履修者が作品の利用者になる子ども達とやり取りをしながら、作品の製作に取り組むことを通じて、自身の社会における役割と何かを考え、認識を深めることにある。履修者は、保育園の子ども達が実際に使うチェアを段ボールを材料として製作する。製作に当たっては、既製品を見本としながら、オリジナルの作品を製作する。作品の企画・製作に当たっては、段ボールクラフトの実務家から、アドバイスを受けることができる。特に、作品の安全性・耐久性は、製作に当たって配慮するべき重要な項目になる。履修者は、完成した作品を保育園に納品するところまで行う。

到李日堙

- (a) ユーザー調査に基づいた製品を検討し、企画書として整理することができる。
- 、, (b) 設定された規格条件に基づく製品の企画·製作が行える。
- (c) 他の班による製品に対して、設定された基準に基づく評価を行うことができる。
- (d) ユーザーからの技術者への期待について、作業を通じて検討し記述できる。
- (e) チームの中で活動し、自身の役割を果たし、成果を挙げるために活動できる。
- (f) 毎日の活動を通じた学びについて、振り返りを行い身につけることができる。

教科書 /Textbooks

授業中の配付資料による。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中の配付資料による。

企業と技術者

(Business and the Engineer)

授業計画・内容 /Class schedules and Contents

- 1 (1日目)オリエンテーション、工作チーム編成、キット組立体験
- 2 (1日目)保育園訪問
- 3 (1日目)作品デザイン案づくり
- 4 (1日目)作品デザイン決定、ものづくり技術者講演(a)、キット構造学習
- 5 (2日目)作品模型づくり、作品製図(寸法決め)
- 6 (2日目)部材製図
- 7 (2日目)部材切り出し
- 8 (2日目)組み付け
- 9 (3日目)作品一次完成
- 10 (3日目)作品モニター(園訪問)
- 11 (3日目)モニター結果共有と改善案検討
- 12 (3日目)作品改善作業
- 13 (4日目)作品仕上げ
- 14 (4日目)作品発表会
- 15 (4日目)講評と振り返り
- 16 (5日目)納品(園訪問)

成績評価の方法 /Assessment Method

到達目標(a):作品企画書と模型 [10%]

到達目標(b):作品 [50%]

到達目標(c):作品審査票[10%]

到達目標(d):最終レポート [10%]

到達目標(e):チームへの貢献度評価[10%]

到達目標(f):振り返りカード [10%]

※チーム作業に対する貢献の程度、出席状況により成績を調整します。授業を1コマ遅刻・欠席すると成績の1/15が割り引かれます。前日の振り 返りレポートを授業開始時までに、教員へ提出することにより、当日出席したものと見なされます。

事前・事後学習の内容 /Preparation and Review

事前学習として、チーム作業のための情報収集やデザイン・設計などの準備作業を行います。また、事後学習として、その日の学びに関する振り返りレポートに記述し提出する準備を行います。

履修上の注意 /Remarks

- (1)履修の前提として、保険(学研災・学研賠)への加入が必要になります。(費用は履修者の自己負担です。)
- (2)正当な理由なく遅刻・欠席すると成績が割り引かれるので、時間にルーズな人には履修をお勧めしません。
- (3)グループワークを通じて作品製作を行います。グループ活動に貢献できない人は、高い成績を収めることが難しいです。
- 、, (4)毎回の授業終わりに、課す学習内容に関する振り返りレポートを次回の授業開始時までに提出することで、出席扱いとなります。
- (5)工作実習が遅れる場合には、授業時間外の作業を求めます。
- (6)現場実習先の保育園では、園児にとって学生の皆さんは「先生」として見なされます。したがって、毅然とした態度で臨み、服装など身だしなみを整えることを求めます。
- (7)授業を行う工房の収容定員の都合により、履修者を50名で制限します。履修者は、登録作業第1週目の応募者から選抜します。

担当者からのメッセージ /Message from the Instructor

ワークショップや提出課題の多いタフな授業になりますので、覚悟して履修して下さい。

キーワード /Keywords

技術者、ものづくり、役割意識、キャリア、実務経験のある教員による授業

BUS211F

経営入門

経営入門

(Introduction to Business Management)

担当者名 辻井 洋行 / Hiroyuki TSUJII / 基盤教育センターひびきの分室

/Instructor

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス Year /Credits /Semester /Class Format /Class

2014 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2018 2019 /Year of School Entrance O O Ο O O

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位担	受与方針における能力		到達目標
知識・理解	総合的知識・理解	•	企業の役割や仕組みについて、説明することができる。
	情報リテラシー		
技能	数量的スキル		
	英語力		
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
関心・意欲・態度	社会的 責 任・倫理観	•	企業の社会的な影響力の大きさを把握することができる。
[新心,写]] · [18][6	生涯学習力	•	社会現象としての企業に関心を持ち、自らの態度を適応させることができる。
	コミュニケーション力		

授業の概要 /Course Description

現代社会において、経済の基礎を担う企業に注目し、その仕組みや行動原理についての基本的な理解を進めます。この授業は、ベンチャー精神を持って最先端の製品・サービスの開発・生産・供給に取り組む地域の中・小規模企業の経営者の協力を得ながら、「経営するとはどういうことか」という素朴な問いに迫ります。履習者は、経営者による講話を踏まえ、企業の訪問見学、経営調査を通じて、経営者の価値観や将来ビジョンが、実際の企業現場でどのように具現化されているのかを見聞きし、経営を考える視点を養います。さらに、履修者は、学習の成果を広く地域の産学官関係者に対してプレゼンテーションして、将来につながる人的なネットワークを得ます。

授業には、特別講師として、 4~6名の市内企業の経営者の方々をお招きし、経営することの醍醐味や工夫、また、将来に向けた企業の発展ビジョンについて語り尽くします。

【達成目標】

- (a)各回の学びに関して記述できる。
- (b)経営者との議論に参加し内容を理解できる。さらには、有効な質問ができる。
- (c)企業の生産現場に触れて、必要な質問ができる。
- (d)経営者の哲学や理念が、就業の場でいかに具現化されているのかを記述できる。さらに、その背景について調査し整理することができる。
- (e)学習成果について取りまとめ、調査対象企業の経営について聞き手に対して有意味な説明ができる。

教科書 /Textbooks

配布資料による。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

配付資料による。

授業計画・内容 /Class schedules and Contents

- 1 (1日目;8/16・金 | 3限)授業への取り組み方、経営者とトーク準備、企業情報の読み方
- 2 (2日目;8/19·月|3限)経営者-学生トーク[1]A社、B社
- 3 (2日目;8/19·月 | 4限)経営者-学生トーク[2]C社、D社
- 4 (3日目;8/20·火 | 3限)経営者-学生トーク[3]E社、F社、企業見学準備
- 5 (4日目;8/22·木 | 2限)企業見学[1]第1班(A社)、第2班(D社)
- 6 (4日目;8/22·木|3限)企業見学[2]第1班(B社)、第2班(E社)
- 7 (4日目;8/22·木|4限)企業見学[3]第1班(C社)、第2班(F社)
- 8 (5日目;8/23・金 | 2限)企業見学振り返りと企業滞在取材準備
- 9 (6日目;8/26-30 | 1限)企業滞在取材[1]取材;始業・朝礼など
- 10 (6日目;8/26-30 | 2限)企業滞在取材[2]取材;工場・ラボなど
- 11 (6日目;8/26-30 | 3限)企業滞在取材 [3] 取材;事務所など
- 12 (6日目;8/26-30 | 4限)企業滞在取材 [4] 取材;社長室など
- 13 (6日目;8/26-30 | 5限)企業滞在取材 [5]取材;終業・終礼など
- 14 (7日目;9/2・月|3限)企業滞在取材振り返りと発表会準備
- 15 (8日目;9/5·木 | 5限)発表会

経営入門

(Introduction to Business Management)

成績評価の方法 /Assessment Method

(a)経営者-学生トーク 30% (参加10%、Q&A10%、振り返りレポート10%)

(b)企業見学 20% (参加10%、振り返りレポート10%) (c)企業滞在取材 20% (参加10%、振り返りレポート10%)

(d)学習成果発表会 20%(基礎点10点、Q&A10%)

(e)総合学習レポート 10%

※遅刻・欠席した場合は、1コマ当たり1/15の成績が総得点から差し引かれる。

事前・事後学習の内容 /Preparation and Review

- ・登壇する経営者の企業や関連する産業分野について調べ、有効な質問を用意しておく。
- ・授業で配布された資料に関して復習し、関連する質問を作成しておく。
- ・授業での学習成果発表会の準備に、時間外での自主活動が必要になる。
- ・授業にご協力頂く北九州革新的価値創造研究会について、次のURLからメンバー経営者を確認しておくこと。<http://www.ksrp.or.jp/katiken/>

履修上の注意 /Remarks

- ・会社見学受入可能人数の都合により、履修者数制限を行うことがある。大学コンソーシアム関門の科目にも指定するため、他大学からの履修 者を含めた全履修者数を40名とする。
- ・履修に際し、学研賠・学研災への加入が必須になる。企業滞在取材には、各自で移動するための交通費(各自支出)が必要になる。
- ・地域企業において、経営者の哲学や経営理念がどのように具体化されているのかを主体的に調べ体感する企業滞在取材を行う。出社の日取りは受入企業との調整のうえ決定する。(8/26-30のうちいずれか1日に出席)
- ・企業滞在取材の結果を踏まえた学生による学習成果プレゼンテーションを北九州イノベーションギャラリー(八幡東区東田2-2-11)に行う予定である。

担当者からのメッセージ /Message from the Instructor

- ・「経営するってどういうこと?」という素朴な疑問に対して、経営者との直接のやりとり、実際の経営現場への訪問を通じて答えを探す画期 的なプログラムである。
- ・市内企業の複数の経営者の方々からご協力を頂き実施するプログラムなので、礼節と覚悟をもって履修すること。

キーワード /Keywords

経営者、経営哲学·理念、地域企業、ベンチャー精神

倫理入門

(Introduction to Ethics)

担当者名 /Instructor 森本 司 / Tsukasa MORIMOTO / 基盤教育センターひびきの分室

履修年次 2年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2013 2014 2018 対象入学年度 2008 2009 2010 2011 2012 2015 2016 2017 2019 /Year of School Entrance \circ O 0 O O Ο

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
理解	総合的知識・理解		
	情報リテラシー		
	数量的スキル		
	英語力		
判断・表現	課題発見・分析・解決力	•	複雑な状況下で、問題を定義し、分析することができる。
	自己管理力	•	倫理問題を他人事ではなく、自分の立場で考え、対応することができる。
意欲・態度	社会的責任・倫理観	•	主観的な関心だけでなく、社会の共通ルールを考え、身につけることができる。
	生涯学習力		
	コミュニケーション力		
	判断・表現	理解 総合的知識・理解 情報リテラシー 数量的スキル 英語力 課題発見・分析・解決力 自己管理力	理解 総合的知識・理解 情報リテラシー 数量的スキル 英語力 課題発見・分析・解決力 ● 自己管理力 ・ 社会的責任・倫理観 生涯学習力

倫理入門 PHR211F

授業の概要 /Course Description

倫理問題は問題の中でも問題を考える条件や前提、制約が明確に表現されていません。問題の中でも特にやっかいな応用問題であるといえま す。問題状況にあっても何が問題なのか、問題を考えるための前提は何か、どう表現すればよりよく考えることができるのかが難しい問題です

そこで、この授業では、テキストの内容を理解し整理する作業からはじめて、いったい何が問題なのか、どう表現すれば分かりやすくなるの かという、倫理問題を材料として、問題を発見し、表現する仕方を学習します。

授業では、予習・復習確認をします。毎回、授業で配布したプリントでノートを作り、授業終了後提出してもらいます。また、授業中にテキ ストの内容について小テストを数回行います。

この授業ではただ座って聞いているだけではなく、

- ・メモをとる、
- ・メモから、自分の言葉で文章を作る
- ・自分の文を組み立てて、ノートを作成する
- ・本をたくさん読む
- ・文脈を理解する

という作業が必要です。この種の作業に慣れていない人は受講が困難です。

F再履修受講学生には、毎週課題を提出してもらいます。

教科書 /Textbooks

・『現代倫理学入門』、加藤尚武、講談社学術文庫

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

『ここからはじまる倫理』、A.ウエストン、春秋社

※その他授業中に提示します。

倫理入門

(Introduction to Ethics)

授業計画・内容 /Class schedules and Contents

- 1 履修説明・概要
- 2 「嘘について」その1(問題提起)
- 3 「嘘について」その2(考察と課題)
- 4 「功利主義について」その1(問題提起)
- 5 「功利主義について」その2(考察と課題)
- 6 「平等主義について」その1(問題提起)
- 7 「平等主義について」その2(考察)
- 8 「エゴイズムと道徳」その1(問題提起)
- 9 「エゴイズムと道徳」その2(考察と課題)
- 10 「判断能力の判断」その1(問題提起)
- 11 「判断能力の判断」その2(考察と課題)
- 12 「正直者の損について」その1(問題提起)
- 13 「正直者の損について」その2(考察と課題)
- 14 「他人への危害について」その1(問題提起)
- 15 「他人への危害について」その2(考察と課題)

成績評価の方法 /Assessment Method

授業中のノート 40%

授業レポート 30%

期末レポート 30%

評価の基準:

講義内容:40%、表現・構成:40%、独自性:10%、具体性:10%

事前・事後学習の内容 /Preparation and Review

- ・予習確認をしますので、必ずテキストを予習してきてください。
- ・次回には、復習確認をしますので、学習した内容を基に、ノートを作成してください。
- ・内容がつながっていますので、以前の授業内容をよく復習してください。特に、功利主義的な考え方については復習しておいてください。
- ・授業内容の区切りにレポートを課しますので、あらかじめテキストの該当箇所をよく読んできてください。

履修上の注意 /Remarks

- ・授業でレポートを作成してもらいます。レポートの作成は、数回あります。また、授業の最後に全体をまとめるレポートの作成を課します。
- ・授業ではただ座って聞いているだけでは授業を理解することは困難です。メモをとる、メモからノートを作成する作業が必要です。この種の 作業に慣れていない人は受講は難しいでしょう。ノートは毎回提出してもらいます。

担当者からのメッセージ /Message from the Instructor

・テキストの言葉をそのまま写すのではなく、できるだけ自分の言葉で表現できるような文章作成の練習をしてください。そのためのヒントを 授業中に提供しますので、単語や語句を書き取りながら、メモをとる練習をしてください。理解力・表現力を向上させて、問題提起の力と問題 を考えるための条件を抽出する力を身につけましょう。

キーワード /Keywords

功利主義、人格主義

日本語の表現技術

(Writing Skills for Formal Japanese)

担当者名 池田 隆介 / Ryusuke IKEDA / 基盤教育センターひびきの分室

/Instructor

 履修年次
 2年次
 単位
 2単位
 学期
 1学期/2学期
 授業形態
 講義
 クラス

 /Year
 /Credits
 /Semester
 /Class Format
 /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance \circ \circ O O O Ο

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位	並授与方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力		
思考・判断・表現	課題発見・分析・解決力	•	アカデミックな実用文執筆のために必要な日本語表現の課題を自ら発見し、解決の糸口 を探ることができる能力を身につける。
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力		
	コミュニケーション力	•	日本語による論理的な文章の書き方の基礎を身につけ、自らの主張や見解を不特定多数 の読み手に伝えることができる。
	<u> </u>		·

日本語の表現技術 LIN211F

授業の概要 /Course Description

この授業は、日本語における論理的な文章構成の習得、および、論述文の表現技術の向上を目的とする。とりわけ、フォーマルな場面で用いられる実用文書で使われる日本語の表現技術を身につけておくことは、教養ある社会人には必須の要素である。この授業においては:

- (1)レポートに求められる評価基準を自分自身で推察できるようになること
- (2)書き言葉として適切な表現・文体を選択すること
- (3)自作の文章の論理性・一貫性を客観的に判断できるようになること

以上の3つの軸に受講生参加型の講義を展開していく。

教科書 /Textbooks

必須教材は授業中に指示、あるいは、教員が適宜準備する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

講義の進行に合わせて紹介する。

授業計画・内容 /Class schedules and Contents

- 1 . オリエンテーション / 環境工学を学ぶ大学生に必要な文章表現能力
- 2.言語とコミュニケーション
- 3.テーマを絞る
- 4.効果的な書き出し
- 5 . 文体 / 話し言葉と書き言葉
- 6.アイディアを搾り出す/ノンストップライティング
- 7. 事実と意見
- 8. 段落の概念(1)中心文と支持文
- 9 段落の概念(2)文のねじれ
- 10.目標規定文を書く
- 11.レポートの評価ルーブリックを考える:ルーブリックの全体像
- 12. 出典を記す / SIST02による表記法
- 13.レポートの評価ルーブリックを考える:本論の評価項目案
- 14.待遇表現
- 15.レポートの評価ルーブリックを考える:本論の評価基準案

※上記の授業項目・順序等は進度に応じて修正を行うことがある。詳細な授業スケジュールはMoodle(http://moodle.kitakyu-u.ac.jp/)にて公開 するので、授業の前後に必ず確認すること。

日本語の表現技術

(Writing Skills for Formal Japanese)

成績評価の方法 /Assessment Method

積極的な授業参加10%

コメント10%

宿題15%

小テスト15%

中間課題10%

期末課題40%

事前・事後学習の内容 /Preparation and Review

授業中の配布物やMoodleにより告知していく。

小テスト準備、授業前の事前課題、授業後の復習コメント作成など、授業外の課題が毎回課されている。

履修上の注意 /Remarks

テストや授業のために必要な準備は、Moodle(http://moodle.kitakyu-u.ac.jp/)で連絡する。重要な連絡にはE-Mailも使う。それ故、moodleを閲覧する習慣、及び、メールチェックをする習慣を身につけておくこと。予定の確認作業は受講者の責任である。また、授業は一定の適正人数での活動を想定している。正確な受講者数把握のため、第1回目の授業から出席すること。

毎回の授業に参加するには、指定された事前学習を行ってくること。事前学習の内容は事前調査、アンケート回答、資料読解など様々な形式を とるが、毎回moodleによって告知するので確認を忘れずに。

また、授業後の作業としては、授業を通じて課された宿題の他、moodleの「授業後のコメント」欄への記入を求める課題がある。「コメント」の記入は原則的に授業翌日が締切となるので注意すること。

※1:出席率80%未満の受講生は不合格とする。

※2:留学生は「技術日本語基礎」に合格していることを履修条件とする。

担当者からのメッセージ /Message from the Instructor

卒業、進学、就職等、学生生活が終盤に近づくにつれ、フォーマルな表現を駆使しなければならない機会は多くなる。適切な表現をTPOに応じて繰り出すことができるよう、この授業を絶好の修練の場にしてほしい。

キーワード /Keywords

日本語、表現技術、実用文、書き言葉、受講生参加型講義

アジア経済

(Asian Economies)

担当者名 中岡 深雪 / Mivuki NAKAOKA / 基盤教育センターひびきの分室

/Instructor

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Credits /Semester /Class Format /Class /Year

対象入学年度

2014 2008 2009 2010 2011 2012 2013 2015 2016 2017 2018 2019 \circ \circ 0 О O Ο

/Year of School Entrance 対象学科

【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標	
知識・理解	総合的知識・理解	•	日本を含むアジアの国々について説明することができる。	
	情報リテラシー			
技能	数量的スキル	•	経済発展の各国比較を数量的に行うことができる。	
	英語力			
思考・判断・表現	課題発見・分析・解決力	•	アジア各国の経済成長の原動力について考察することができる。	
	自己管理力			
 関心・意欲・態度	社会的責任・倫理観			
	生涯学習力			
	コミュニケーション力			

アジア経済 IRL211F

授業の概要 /Course Description

東アジアの国々の経済発展、そして貿易と直接投資を通じて各国間の関係が緊密になってきたことについて学習する。例えば貿易に関しては 、輸出額では東アジアからの日本を除く輸出額4兆4350億ドルが世界の輸出総額17兆5272億3000万ドルの約4分の1超を占めている(2017年)。 その37年前の1980年は世界の輸出総額1兆8322億8000万ドルのうち東アジアの輸出額1415億9200万ドルは割合が7%であったことを考えると、 この間、世界経済における東アジアの存在感が上昇していることがわかる。そして、2017年の東アジアの輸出の約3割が東アジア域内で行われて おり、域内各国の経済関係が密接であることもわかる。今後もその傾向は継続すると思われる。

このように日本にとってアジア諸国は単に近くにある国ではなく、経済面でつながりが深い。本講義ではアジア経済発展の過程において、日 本を中心とした経済関係の構築、発展の経緯について考察を行うと同時に、各国経済について理解を深める。

教科書 /Textbooks

特に指定しない。授業中適宜資料を配布する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

- ○大野健一・桜井宏二郎著『東アジアの開発経済学』有斐閣アルマ、1997年
- ○末廣昭著『キャッチアップ型工業化論』名古屋大学出版会、2000年
- 〇片山裕・大西裕著『アジアの政治経済・入門』有斐閣ブックス、2006年
- 〇西澤信善・北原淳編著『東アジア経済の変容』晃洋書房、2009年
- ○渡辺利夫編『アジア経済読本』東洋経済新報社、2009年
- 原洋之介著『開発経済論』岩波書店、1996年
- 佐々木信彰編著『転換期中国の企業群像』、晃洋書房、2018年

授業計画・内容 /Class schedules and Contents

- 1 イントロダクション
- 2 時系列で考える
- 3 横のつながりで考える(1)―20世紀のアジア地域の貿易構造―
- 4 横のつながりで考える(2)一貿易動向の変化一
- |5 統計を読み解く(1)一方法と手順一
- 6 統計を読み解く(2)一分析-
- 統計を読み解く(3)一解説と修正一
- どのようにしてアジア経済の発展が始まったのか(1)一輸出志向工業化一
- 9 どのようにしてアジア経済の発展が始まったのか(2)一雁行形態論一
- 10 アジア通貨危機はなぜ起こったのか
- 11 日本の産業空洞化
- 12 時事問題一経済発展一
- 13 中国経済
- 14 韓国経済
- 15 まとめ

アジア経済

(Asian Economies)

成績評価の方法 /Assessment Method

期末試験 50%

小テスト、授業中の発言や提出物50%

提出物では特に時系列分析の課題の比重が大きい。

事前・事後学習の内容 /Preparation and Review

授業開始前には事前に配布するプリントを用いて予習をすること。授業終了後はプリントや適宜配布する練習問題で復習をすること。

履修上の注意 /Remarks

常にアジア地域に関するニュースに耳を傾けるようにしましょう。

先に経済入門Ⅱを履修していることが望ましい。

担当者からのメッセージ /Message from the Instructor

本講義では東アジアの国々を事例に経済成長のメカニズムを考えます。日本経済の歴史やアジア地域との関わりについても勉強し、知識を増や していきましょう。

キーワード /Keywords

アジア 日本経済 経済発展 中国

ことばとジェンダー

(Language and Gender)

担当者名 水本 光美 / Terumi MIZUMOTO / 非常勤講師

/Instructor

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2008 2009 2010 2011 2012 2013 2015 2016 2017 2018 2019 \circ \circ О O O Ο

対象学科

【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授-	5方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力		
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
	社会的責任・倫理観		ジェンダーを表現することばを認識し、責任ある社会人として倫理的な言動をすることができる。
関心・意欲・態度	生涯学習力	•	社会においてジェンダー表現に関する課題を発見し解決するために、倫理的言動をする ことができる。
	コミュニケーションカ	•	ジェンダーバイアスに支配されない正しい知識と精神力でもって、お互いを尊重しつつ コミュニケーションを取ることができる。

ことばとジェンダー GEN211F

授業の概要 /Course Description

ジェンダー」とは、人間が持って生まれた性別ではなく、社会や文化が培ってきた「社会的・文化的な性のありよう」です。この講義では、ジェンダーに関する基礎知識を身につけるとともに、生活言語、メディア言語などが持つ様々なジェンダー表現を観察、検証することにより、日本社会や日本文化をジェンダーの視点から考察します。この授業では、社会におけるジェンダー表現に関する課題を発見し解決するために、責任ある社会人として倫理的言動をすることができる能力を養成します。

教科書 /Textbooks

最初のオリエンテーションで指示する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中に指示する。

授業計画・内容 /Class schedules and Contents

- 1 ①オリエンテーション ②ジェンダーとは 1
- 2 ①ジェンダーとは 2 ②「男らしさ、女らしさ」とは:ジェンダーからことばを見る
- 3 作られる「ことば」女ことば
- 4 作られる「ことば」男ことば
- 5 メディアが作るジェンダー:マンガ1(構造とジェンダー表現)
- 6 メディアが作るジェンダー:マンガ2(ストラテジーとしてのジェンダー表現)
- 7 メディアが作るジェンダー:テレビドラマ1(テレビドラマと実社会のことばの隔たり)
- 8 メディアが作るジェンダー:テレビドラマ2(テレビドラマの女性文末詞)
- 9 変革する「ことば」:差別表現とガイドライン1(差別表現とは何か)
- 10 変革する「ことば」:差別表現とガイドライン2(ジェンダーについて語る言説)
- 11 変革する「ことば」:差別表現とガイドライン3(表現ガイドライン)
- 12 変革する「ことば」:私の名前・あなたの名前1(「家」をあらわす姓・夫婦同姓と家族単位の戸籍)
- 13 変革する「ことば」:私の名前・あなたの名前2(婚姻改姓にともなう問題・選択制夫婦別姓)
- 14 変革する「ことば」:セクシュアル・ハラスメント1(ことばは認識を変える力をもつ)
- 15 変革する「ことば」:セクシュアル・ハラスメント2(セクシュアル・ハラスメントはなくせるか)
- * 授業スケジュールは、状況に応じて、適宜、変更される場合もある。

ことばとジェンダー

(Language and Gender)

成績評価の方法 /Assessment Method

積極的な授業参加 20% 宿題・ 小テスト 30% ディベート・ディスカッション 20% 期末試験 30%

* 出席率80%未満は、不合格とする。

事前・事後学習の内容 /Preparation and Review

< 重前淮備 >

毎回、前週の授業内容に関して小テストを実施するため、授業内容を復習してくることが必要である。

<事後学習>

授業内容の理解を確認するために宿題をすることが必要である。

履修上の注意 /Remarks

- 1. 日本人と留学生の混合小規模クラス。
- 2. ディスカッションやディベートも実施するため、授業で積極的に発言する意志のある学生の履修が望ましい。
- 3. 留学生は「技術日本語基礎」か日本語能力試験 1級(N1)に合格していること。
- 4. 受講生は、Moodleに登録する必要がある。

担当者からのメッセージ /Message from the Instructor

私たちの生活は、数多くのジェンダー表現に囲まれています。それらは、どのような価値観、社会慣習などによるものか 分析することによって、無意識に自己の中に形成されている男性観・女性観・差別意識について一緒に考えてみませんか 。単に講義を聴くという受身的姿勢から脱して自発的に発言し、事例収集などにも積極的に取り組む態度を期待します。この授業から学んだこ とは、皆さんが社会人になってからも大いに役にたつと思います。

キーワード /Keywords

ジェンダーイデオロギー、ジェンダー表現、差別語、性差別表現、ジェンダーをつくることば

工学倫理

(Engineering Ethics)

辻井 洋行 / Hirovuki TSUJII / 基盤教育センターひびきの分室 担当者名

/Instructor

履修年次 3年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2013 2014 2016 対象入学年度 2008 2009 2010 2011 2012 2015 2017 /Year of School Entrance \circ O О O O

対象学科 【必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	- 方針における能力		到達目標
知識・理解	総合的知識・理解	•	技術者としての倫理的行動の仕方と理論を説明することができる。
	情報リテラシー		
技能	数量的スキル		
	英語力		
思考・判断・表現	課題発見・分析・解決力	•	技術的な対応を越えた課題を指摘し、倫理的な対応を検討することができる。
	自己管理力	•	技術者としての倫理的行動の評価基準を運用することができる。
 関心・意欲・態度	社会的責任・倫理観	•	技術者の社会的な影響力を理解し、倫理的な行動を設計することができる。
	生涯学習力		
	コミュニケーション力		

CAR301E 工学倫理

2018

O

2019

授業の概要 /Course Description

現代社会における製品・サービスの生産・供給は、高度化・複雑化した技術を基盤として成り立っています。技術者は、多様なステイクホル ダーの持つ価値観の間で、ジレンマに苛まれながら難しい判断を迫られることが少なくないといいます。この授業では、技術者として様々な倫 |理 的課題に直面した時に、どのように対処していけばよいのか、自ら考え、仲間と話し合いながら判断するための方法を身につけます。ただし 、工学倫理は、一定のルールに従えば、唯一の正解が得られるという類の学問ではありません。むしろ、様々な解の可能性を探究すること、ま た、いくつも解から状況に応じて適切と思えるものを選び出す不安を経験することに学ぶ価値を置きます。

【到達目標】

- (a)教科書や関連資料に掲載されている倫理事例について、論点を整理し、問題提起ができる。
- (b)教科書の倫理事例の理解を進めるクイズを作成し、解説ができる。
- (c)グループで事例を検討し、技術者倫理の視点から解答を作成できる。
- (d)学科別の倫理課題に取り組み解答を作成できる。
- (e)工学倫理に関わる基本知識を理解し運用できる。

教科書 /Textbooks

齊藤了文・坂下浩司『はじめての工学倫理(第3版)』(昭和堂)2014年

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

- ○中村収三・一般社団法人近畿化学協会工学倫理研究会『技術者による実践的工学倫理(第3版)』(化学同人)2013年
- ○辻井洋行·水井万里子·堀田源治『技術者倫理-技術者として幸福を得るために考えておくべきこと-』(日刊工業新聞社)2016年

工学倫理

(Engineering Ethics)

授業計画・内容 /Class schedules and Contents

1 組織とエンジニア / チャレンジャー号事故(1)、(2) 2 企業の社会的責任 / フォード・ピント事件(1)、(2)

3 安全性と設計 / 日本航空ジャンボ機墜落事故、阪急伊丹駅のユニバーサルデザイン

4 事故調査 / 日航機ニアミス、信楽高原鉄道事故

5 製造物責任 / 三菱自動車工業リコール隠し事件、六本木ヒルズ回転ドア事故

6 知的財産権 / 遺伝子スパイ事件、青色発光ダイオード裁判 7 施工管理 / 原発コンクリート大量加水事件、欠陥住宅 8 工程管理 / 雪印乳業集団食中毒事件、JCO臨界事故

9 維持管理 / エキスポランド·ジェットコースター事故、東京電力トラブル隠し 10 企業秘密を守る / 転職のモラル 新潟鉄工事件、技術情報の囲い込み IBM産業スパイ事件

11 内部告発 / ギルベイン・ゴールド、日本における内部告発の事例

12 倫理規定 / 原子炉圧力容器のゆがみ矯正、他分野の専門職における倫理規定と懲戒制度

【化学·生命】

13 技術士における工学倫理

14 知的財産(特許)の考え方・特許明細書の構成分析

15 生命科学における工学倫理

【機械·情報·建築】

13 ビデオ教材(1)「ソーラーブラインド」

14 ビデオ教材(2)「技術者の自律」

15 まとめ

成績評価の方法 /Assessment Method

到達目標(a)+(b):事例紹介及び討論[20%] 達成目標(c):グループワーク提出[30%]

達成目標(d):学科別課題[20%] 到達目標(e):期末試験[30%]

事前・事後学習の内容 /Preparation and Review

履修者は、毎回の授業準備として教科書の該当範囲を読んで授業に備えます。

また、当番制で、単元毎の事例発表と討論を履修者グループが行います。

授業後には、学習内容に関する振り返りを行い、質問・コメントとして整理します。

履修上の注意 /Remarks

- ・教科書は、事前学習や授業中の教材として、また、事例発表・討論の材料として使いますので、必ず必ず入手して下さい。
- ・課題提出のためにMoodleを活用します。
- ・課題提出などの通知には、ActiveMail を用いるので、受信設定を整えておいて下さい。

担当者からのメッセージ /Message from the Instructor

技術者倫理を学ぶ理由は、将来、同じような問題に直面した時に備えて、あなた自身に免疫を付けることにあります。上司や同僚から大きな問題に巻き込まれないように、また、巻き込まれそうになった時にヒラリと身をかわすための心の準備をするのがこの科目といえます。この種の問題に上手く応対するスキルを身につければ、技術者にとって活躍の場を恐れる必要はありません。教科書を用いた事前学習と授業中の演習を軸として、学習を進めて行きます。履修者が十分な準備をすることで、より理解が進んで、楽しさを感じられる授業にしようと思います。

キーワード /Keywords

工学倫理、技術者倫理、技術者のための倫理

企業研究

(Enterprises and Industries)

担当者名 辻井 洋行 / Hiroyuki TSUJII / 基盤教育センターひびきの分室

/Instructor

履修年次 3年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance \circ O О O O O

対象学科 【選択】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

企業研究 CAR302F

授業の概要 /Course Description

この授業において、履修者は経済・経営の分析指標用いながら、自分自身が重視する基準で、業界・企業研究を行えるようになります。さらに、調査研究の成果を他の履修者に対して発表することを通じて、業界・企業の直面する課題をより深く認識し、自身がどのように関わることができそうか、課題解決の観点を持つことができるようになります。これらの経験は、就職活動だけでなく、長い目でみた自身のキャリアを充実させることにつながります。

【到達目標】

- (a)業界·企業分析の基本概念を理解し活用できる。
- (b)経済データ等を用いた業界·企業分析ができる。
- (c)特別授業を通じて、これからの働き方のイメージを具体化できる。
- (d)関心ある業界·企業が直面する課題を指摘し、自身の専門性を活かした解決への筋道を検討できる。
- (e)講義やグループワークなど学習内容を言葉にして、説明できる。

教科書 /Textbooks

配付資料による。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

業界地図、東洋経済新報社など

会社四季報、東洋経済新報社

就職四季報、東洋経済新報社

有価証券報告書検索サイトEDINET、金融庁

授業計画・内容 /Class schedules and Contents

- 1 オリエンテーション
- 2 産業・企業調査資料の読み方と活用法(1);業界地図、会社四季報
- 3 産業・企業調査資料の読み方と活用法(2);有価証券報告書
- 4 調査研究グループの編成、調査領域・トピックスの決定
- 5 調査研究ワーク(1);基礎資料の収集
- 6 調査研究ワーク(2);研究方針の決定、論点整理
- 7 調査研究ワーク(3);資料の収集と分析
- 8 調査研究ワーク(4);発表資料の作成
- 9 研究発表(1);化学分野
- 10 研究発表(2);機械分野
- 11 研究発表(3);情報分野
- 12 研究発表(4);建築分野
- 13 研究発表(5);バイオ分野
- 14 〈特別授業〉これからの働き方(仮)
- 15 まとめ

企業研究

(Enterprises and Industries)

成績評価の方法 /Assessment Method

到達目標(a);期末試験(20%) 到達目標(b);調査研究発表(50%) 到達目標(c);特別授業(5%)

到達目標(d); リサーチ・ペーパー(15%) 達成目標(e); 振り返りカード(10%)

事前・事後学習の内容 /Preparation and Review

この授業は、グループワークを中心に行うため、情報収集や発表準備など、事前準備に取り組みます。また、授業後には、活動の振り返りをま とめて提出します。

履修上の注意 /Remarks

この授業では、学内ネットワーク上のMoodleを課題提出などのために活用します。必ず利用者登録をして下さい。また、情報伝達のために ActiveMailを用いますので、受信できる環境を整えておいて下さい。

毎回の振り返りカードは、次回の授業の開始時に提出することで、出席したものと認めます。正当な理由なく、遅刻·欠席すると成績が割り引かれて行きます(毎回1/15)ので、時間にルーズな人には履修を勧めません。

授業中には、グループでの課題検討を行います。知らない人とでもグループ活動できる人でなければ、課題提出に支障を来す場合があります。 担当教員のメールアドレス:tsujii@kitakyu-u.ac.jp

担当者からのメッセージ /Message from the Instructor

グループワークや提出物が多く、作業量の多い授業になりますので、覚悟して履修して下さい。

キーワード /Keywords

企業研究、業種·業界、キャリアプランニング

現代人のこころ

(Introduction to Mind)

担当者名 村上 太郎 / Taro MURAKAMI / 非常勤講師

/Instructor

履修年次 1年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance \circ \circ \circ O O \circ

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

※お知らせ/Notice この科目は北方・ひびきの連携科目です。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation) , Specific Targets in Focus

	学位授与	-方針における能力		到達目標
知識・3	理解	総合的知識・理解	•	心理学についての教養的基礎知識を身につける。
		情報リテラシー		
技能		数量的スキル		
TXHE	Ē	英語力		
		その他言語力		
思考・3	判断・表現	課題発見・分析・解決力	•	心理学的観点から課題の発見、解決策を考えることができる。
		自己管理力		
		社会的責任・倫理観		
関心・) 		生涯学習力	•	社会の諸問題を心理学的観点から解決するために学習を続けることができる。
		コミュニケーション力		

現代人のこころ PSY003F

授業の概要 /Course Description

心理学という学問領域では、人間個人や集団の行動から無意識の世界に至るまで幅広い領域での実証的研究の成果が蓄えられている。この講義は、現代の心理学が明らかにしてきた、知覚・学習・記憶・発達・感情・社会行動などの心理過程を考察する。とくに、現代人の日常生活のさまざまな場面における「こころ」の働きや構造をトピックとして取り上げ、心理学的に考察し、現代人を取り巻く世界について心理学的な理論と知見から理解する。

教科書 /Textbooks

テキストは使用しない。必要に応じてハンドアウトを配布する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業の中で適宜紹介する。

授業計画・内容 /Class schedules and Contents

第 1 回 オリエンテーション

第2回 こころの科学1【心理学の方法、統計】

第3回 こころの科学2【学習、行動主義】

第4回 こころと行動【進化、生得的プログラム】

第5回 こころと他者【愛着、葛藤】・まとめと小テスト

第6回 自己の発見【自己意識、自己概念】

第7回 動物のもつ自己意識【自己像認知、マークテスト】

第8回 他者への気づき【アニマシー、社会性】

第9回 他者の心を読む【共感、心の理論】

第10回 まとめと小テスト

第11回 思春期・青年期の人間関係 1 【親子関係、第2の分離・個体化・共依存】

第12回 思春期・青年期の人間関係2【友人関係、ふれあい恐怖】

第13回 思春期・青年期における自己の問題【アイデンティティ】

第14回 思春期・青年期を再考する【アイデンティティ危機、不適応】

第15回 まとめと小テスト

成績評価の方法 /Assessment Method

課題(小テストまたはレポート)・・・80%

日常の授業への取り組み・・・20%

基盤教育科目 教養教育科目 人文・社会

現代人のこころ

(Introduction to Mind)

事前・事後学習の内容 /Preparation and Review

事前学習として、シラバスの授業計画・内容に記載されているキーワードについて調べておく。 事後学習として、内容の理解を深めるため配布資料やノートをもとに授業の振り返りを行う。

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

キーワード /Keywords

実務経験のある教員による授業

共生の作法

担当者名 高橋 衛 / 法律学科, 重松 博之 / SHIGEMATSU Hiroyuki / 法律学科

/Instructor 二宮 正人 / Masato, NINOMIYA / 法律学科, 堀澤 明生 / Akio Horisawa / 法律学科

津田 小百合 / Sayuri TSUDA / 法律学科, 土井 和重 / Kazushige Doi / 法律学科

清水 裕一郎 / Yuichiro Shimizu / 法律学科, 小野 憲昭 / ONO NORIAKI / 法律学科

中村 英樹 / 法律学科, 福本 忍 / FUKUMOTO SHINOBU / 法律学科

福本 忍 / FUKUMOTO SHINOBU / 法律学科, 水野 陽一 / 法律学科

石塚 壮太郎 / ISHIZUKA, Sotaro / 法律学科, 今泉 恵子 / 法律学科

小池 順一 / junichi KOIKE / 法律学科

履修年次 1年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度

/Year of School Entrance

2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
					0	0	0	0	0	0	

対象学科

【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

※お知らせ/Notice この科目は北方・ひびきの連携科目です。北方キャンパスで開講されます。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation) , Specific Targets in Focus

-方針における能力		到達目標
総合的知識・理解	•	共生という観念と法との関係や共生における法の役割を総合的に理解する。
情報リテラシー		
数量的スキル		
英語力		
その他言語力		
課題発見・分析・解決力		現代社会における共生の問題について、法の観点を踏まえ、総合的に分析し、自立的に 解決策を考えることができる。
自己管理力		
社会的責任・倫理観		
生涯学習力	•	現代社会における共生に関する課題を自ら発見し、解決のための学びを継続することができる。
コミュニケーション力		
	総合的知識・理解 情報リテラシー 数量的スキル 英語力 その他言語力 課題発見・分析・解決力 自己管理力 社会的責任・倫理観 生涯学習力	総合的知識・理解 情報リテラシー 数量的スキル 英語力 その他言語力 課題発見・分析・解決力 自己管理力 社会的責任・倫理観 生涯学習力

共生の作法 LAW001F

授業の概要 /Course Description

現代社会は、国家としても個人としても、極めて複雑な様々な関係から成り立っている。

そのため、私たちは個人としてどのような関係の中で生活しているのか、そして、どのような関係の中で生活すればよいのかを考えていく必要がある。

すなわち、私たちの生活が、およそ一人では成り立たない以上、人と人との関係、人と国家との関係、国家と国家との関係、世代と世代との 関係、人と自然との関係など、様々な関係の中で成り立っていることを、改めて認識しなければならない。

そのうえで、「他者との共存(共生)」は我々の生活には不可欠であり、そのためにお互いの良好な関係を維持し、これを発展させるために は、お互いに守るべきルールやマナー(作法)があることを知ることが重要である。

そこで、本講義では、以下の各回の個別テーマを素材にしながら、今現在、上記の意味での他者との関係がどのようになっているのか、どのようなルールが設けられているのか(法の役割)を理解したうえで、これらの共生関係をどのように維持し、あるいは改善しなければならないかを考えていくことにする。

教科書 /Textbooks

なし。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

講義の中で適宜指示する。

共生の作法

授業計画・内容 /Class schedules and Contents

- 第 1回 ガイダンス
- 第 2回 民主主義の限界と立憲主義
- 第 3回 政教分離と叙任権闘争
- 第 4回 変化する社会と行政
- 第 5回 国際社会と法一国際行政の観点から
- 第6回 刑罰とは何か
- 第 7回 刑事裁判とは何か
- 第 8 回 契約とは何か
- 第 9回 担保とは何か
- 第10回 商取引における不正競争と法
- 第11回 民事訴訟とは何か
- 第12回 「働く=労働」について考える
- 第13回 法と道徳について
- 第14回 家族とは何か
- 第15回 まとめ

※なお、講義計画・担当者等については一部変更があり得るので、詳細についてはガイダンスの際に説明する。

成績評価の方法 /Assessment Method

レポートによる(100%,ただし④に注意)。

- ① 受講者は学籍番号に応じて指定されたテーマ群のなかから,テーマを1つ選び,レポートを1本作成して提出すること。
- ② レポートの書式等は掲示により別途指示する。レポートは3000字以上とする。
- ③ レポートには、所属学科・学年・学籍番号・氏名・テーマ・講義担当教員名等を明記した所定の表紙を必ず添付すること。
- ④ 出席状況や授業態度が著しく悪いと判断される受講者は,レポート提出があっても評価されないことがある。

事前・事後学習の内容 /Preparation and Review

シラバスを事前に確認してテーマに関わる用語を調べておく。(次の履修上の注意の項を参照のこと) 授業を受講して理解できなかった点について、図書館の参考文献を利用して、調査する。

履修上の注意 /Remarks

講義全体のキーワードだけでなく、各回のテーマに「直接」に関連すると思われるキーワードをいくつか、受講者が自ら想定した上で、それらについて「事前に」新聞・雑誌・本などで情報を収集して、予習しておくと、各回の理解がいっそう深まります。

担当者からのメッセージ /Message from the Instructor

レポート課題は、学籍番号に応じて選択することができる範囲(テーマ群)が決まります。

全ての授業に出席していないと書けないことになるので注意して下さい。

各人が選択できる範囲(テーマ群)は、試験期間開始よりも前の適切な時期に掲示により指定します。

キーワード /Keywords

【現代社会】 【共生】 【作法】 【ルール】

S0C001F

現代社会と新聞ジャーナリズム

担当者名 稲月 正,西日本新聞社

/Instructor

履修年次 1年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象学科 【選択】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

 \circ

 \circ

0

Ο

O

現代社会と新聞ジャーナリズム

O

/Department

/Year of School Entrance

※お知らせ/Notice この科目は北方・ひびきの連携科目です。北方キャンパスで開講されます。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation) , Specific Targets in Focus

学位授-	与方針における能力	到達目標
知識・理解	総合的知識·理解 •	新聞を通して人間、社会、マスメディアの関係性を総合的に理解する。
	情報リテラシー	
 技能	数量的スキル	
TXRE	英語力	
	その他言語力	
思考・判断・表現	課題発見・分析・解決力●	新聞を通して人間理解に必要とされる個人と社会との関係について総合的に分析し、現 代社会が直面する課題を発見する。
	自己管理力	
	社会的責任・倫理観	
関心・意欲・態度	生涯学習力 ●	新聞をはじめとするマスメディアを通して現代社会における課題を自ら発見し、解決の ための学びを継続する。
	コミュニケーション力	

授業の概要 /Course Description

多様な情報メテ ゙ィアが錯綜する現代における「新聞」について学び、情報を評価・識別する力(メディアリテラシー)を身につけることを目的としています。同時に、「新聞」を通して現代社会の諸側面について理解を深めることも目指します。

インターネットか普及した中で、情報や言論の発信・伝達役としての「新聞」の存在感は低下しているという指摘も聞かれます。しかし、社会に流布している情報の出所の多くは新聞です。また、ネットメディアが独自に発する情報は、断片的であったり、信頼性に欠けていたりすることも少なくありません。

新聞社は、24時間、洪水のように情報が飛び交う中、内容を整理して信頼性のある情報として発信することを基本に、①社会の出来事を客観的に伝える、②その背景や問題点を深く掘り下げる、③社会が抱える課題の解決策を提供する、④権力者などの不正追及など健全な批判や言論を通じ民主主義を守ることに取り組んできました。この講義では、そうした新聞社が培ってきた長い経験と実績を基盤に、新聞社のデスクや第一線の記者などが取材や報道体験を話すことを通して、新聞の役割や新聞コンテンツの活用法などについて考えます。なお、本講義は西日本新聞社の提供講座です。

教科書 /Textbooks

なし。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

なし。

現代社会と新聞ジャーナリズム

授業計画・内容 /Class schedules and Contents

第1回目から14回目までは、新聞ジャーナリズムの第一線で活躍している記者、カメラマン、デスク、編集委員らが交代で講師を務めます。 ただし、事件・事故の発生や講師の都合などにより順番・内容が変わることがあります。

【第1回】オリエンテーション/電子メディアへの挑戦 (編集企画委員長/西日本新聞メディアラボメディア事業担当部長)

【第2回】災害被災者に寄りそう (社会部記者)

【第3回】地方の視線で政治と向き合う (都市圏総局デスク)

【第4回】アジアと九州を読み解く (国際部デスク)

【第5回】調査報道・キャンペーン報道 (西日本新聞メディアラボ デジタル報道部デスク)

【第6回】新聞デザインの展開/ビジュアル発信を目指して (デザイン部デスク)

【第7回】地域文化をみつめて/文化部記者の仕事 (文化部デスク)

【第8回】報道写真の力/カメラマンの心得とは (写真部記者)

【第9回】九州経済をどう見るか (経済部デスク)

【第10回】分かりやすさの追求/こども向け紙面 (こどもタイムズ編集長)

【第11回】スポーツ報道の世界/運動記者は何を伝えるか (運動部デスク)

【第12回】新聞の作り方・読み方 (編集センターデスク)

【第13回】暮らしの視点で社会見つめる (生活特報部長)

【第14回】北九州の現場から (北九州本社編集部)

【第15回】社会学者は新聞をどのように「使う」のか(稲月)

成績評価の方法 /Assessment Method

レポート(3回提出が必要です)・・・100%

ただし、出席回数が一定回数以下の受講生はレポートの出来にかかわず、成績を不可(D)とします。

詳細は第1回目の講義で説明します。

事前・事後学習の内容 /Preparation and Review

新聞や雑誌などに目を通し、現代社会や地域が直面する課題やその解決の方法について考えてください。(必要な学習時間の目安は、90分以上 。)

履修上の注意 /Remarks

「成績評価の方法」にも記したように、この授業では、出席回数が一定回数以下の受講生はレポートの出来にかかわず、成績を不可(D)とします。就職活動や実習などで欠席する予定がある者はよく考えて履修してください。

担当者からのメッセージ /Message from the Instructor

現代人に欠かせない能力て゛ある「メテ゛ィアリテラシー」(メディアの特性を理解した上で情報を選別して読み解く力)を身につけてください。

キーワード /Keywords

メディアリテラシー、新聞、ジャーナリズム、現代社会、実務経験のある教員による授業

都市と地域

担当者名 奥山 恭英 / Yasuhide Okuyama / 国際教育交流センター

/Instructor

 履修年次
 1年次
 単位
 2単位
 学期
 2学期
 授業形態
 講義
 クラス

 /Year
 /Credits
 /Semester
 /Class Format
 /Class

対象入学年度
/Year of School Entrance

2014 2018 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 \circ \circ \circ Ο O \circ

対象学科

【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

※お知らせ/Notice この科目は北方・ひびきの連携科目です。北方キャンパスで開講されます。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation),Specific Targets in Focus

	学位授与ス	方針における能力		到達目標
知識・理解	å	総合的知識・理解	•	都市と地域について総合的に理解する。
	4	青報リテラシー		
 技能	娄	牧量的スキル ター・ファイン アンファイン アンアン アンファイン アンアン アンファイン アンファ アンファイン アンファイン アンファイン アンファイン アンファイン アンファイン アンファイン アンファイン アンファイン アンファ アンファン アンファ アンファイン アンファイン アンファイン アンアン アンファイン アンファン アンファン アンアン アンアン アンアン アンアン アンアン ア		
IXHE	芽	英語力		
	ą	その他言語力		
思考・判断・表現	見	果題発見・分析・解決力	•	都市と地域について総合的に分析し、自立的に解決策を考えることができる。
	É	自己管理力		
		社会的責任・倫理観		
関心・意欲・態度	₹ E	主涯学習力	•	都市と地域に関する課題を自ら発見し、解決のための学びを継続することができる。
	=	コミュニケーション力		

都市と地域 RDE002F

授業の概要 /Course Description

日本や海外における都市や地域についての紹介や、それらを捉えるための概念や枠組み、現状での課題や将来の展望などについて講義する。より幅広く俯瞰的な視点を持つことにより都市や地域を様々な形でまた複眼的に捉え、そこから社会に対する新しい視点が生まれることを促す。 都市と地域という概念の多様さを学びながら実際の事例を通して都市・地域の形状、規模、その成り立ちを考察する。また、その延長として都市・地域間の係わりを社会、経済、交通などの視点から分析する枠組みや手法を紹介する。

「都市と地域」の最終的な目的としては、都市と地域の概念の理解と個々人での定義の形成、それらを基にした柔軟な着想を習得することにある。

教科書 /Textbooks

特になし。適宜文献や資料を紹介する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

特になし。適宜文献や資料を紹介する。

授業計画・内容 /Class schedules and Contents

1回 共通 :クラス紹介および注意事項

2回 地域1 :地域の概念:『地域』とは何か?

3回 地域2 :地域学と地域科学 4回 地域3 :地域開発とは 5回 地域4 :地域間という視点 6回 地域5 :地域を分析する

7回 地域6 :地域事例(LQによる分析)

8回 地域7 地域最終クイズ

9回 都市1 :都市』はなぜ存在するか?

10回 都市2 :都市の理論

1 1回 都市3 : 都市開発(再開発) 1 2回 都市4 : 都市の変遷・動態 1 3回 都市5 : 都市を分析する 1 4回 都市6 : 都市事例 1 5回 都市7 : 都市最終クイズ

19 / 121

都市と地域

成績評価の方法 /Assessment Method

クイズ (合計) ... 3 0 % 授業内貢献... 2 0 % 最終クイズ (2回合計) ... 5 0 %

事前・事後学習の内容 /Preparation and Review

日頃から「都市」や「地域」という言葉がどのように使われているかを注意深く観察・考察して授業に臨んで下さい。新聞やTVニュース、もしくはインターネットニュースサイトなどで使われている「都市」や「地域」という言葉の意味を考えて下さい。授業で紹介した様々な「都市」や「地域」の概念を授業後に自らの考えと照らし合わせて考察し、身近な事例に当てはめて次回の授業に臨んで下さい。

履修上の注意 /Remarks

本授業は毎週行われ、講義および討論の形式をとります。授業に毎回出席すること、予習・復習等の準備を行うこと、授業内討論への活発な参加を行うことなどに付け加え、不定期・複数の(Moodleによる)クイズへの回答、および2回の最終クイズへの回答が必要です。

担当者からのメッセージ /Message from the Instructor

授業貢献は授業内ディスカッションでの発言回数および発言内容を評価します。発言の無いもしくは回答のない学生は授業貢献の点数が芳しくなくなるので、活発に発言をしてください。

また、不正行為が発覚した場合は、当該項目だけでなくすべての点数(授業貢献を含む)が0点になります。

キーワード /Keywords

地域科学、地域学、都市構造、都市政策

現代の国際情勢

担当者名 下野 寿子 / SHIMONO, HISAKO / 国際関係学科, 金 鳳珍 / KIM BONGJIN / 国際関係学科

/Instructor 大平 剛/国際関係学科, 白石 麻保/中国学科

松田 智 / Matsuda, Satoshi / 英米学科, 寺田 真一郎 / Shinichiro Terada / 英米学科

アーノルド・ウェイン / ARNOLD Wayne E. / 英米学科

履修年次 1年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 /Year of School Entrance \circ 0 \circ \circ 0

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

※お知らせ/Notice この科目は北方・ひびきの連携科目です。北方キャンパスで開講されます。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	5方針における能力		到達目標
知識・理解	総合的知識・理解	•	現代の国際情勢について理解を深める。
	情報リテラシー		
 技能	数量的スキル		
IXAE	英語力		
	その他言語力		
思考・判断・表現	課題発見・分析・解決力	•	現代の国際社会における問題を認識した上で、分析を行い、解決方法を考察する。
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力	•	現代の国際情勢に対して、継続的な関心を持ち、学びを継続することができる。
	コミュニケーション力		

現代の国際情勢 IRL003F

授業の概要 /Course Description

現代の国際情勢を、政治、経済、社会、文化などから多面的に読み解きます。近年、国際関係および地域研究の分野で注目されている出来事や 言説を紹介しながら講義を進めます。

教科書 /Textbooks

使用しない。必要に応じてレジュメと資料を配布します。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

適宜指示します。

授業計画・内容 /Class schedules and Contents

第1回 オリエンテーション

第2回 下野 日中台関係:ボーダーエリア

第3回 下野 日中台関係:国家の枠組みと社会

第4回 ウェイン The Role of Public Spaces in Cities 第5回 大平 変容するアジア情勢(1)中国とインドの台頭

第6回 大平 変容するアジア情勢(2)日本の防衛力強化

第7回 大平 変容するアジア情勢(3)開発協力における熾烈な争い

第8回 金 日本の「戦後」の終わり

第9回 金 日本の対外関係の諸問題

第10回 金 戦後の国体、永続敗戦

第11回 白石 中国の持続的発展の可能性:経済成長・SNA・投資

第12回 寺田 インターネットを巡る国際情勢

第13回 松田 日本総合商社と海外インフラプロジェクト【世銀保証、IFC、Bローン、商社】

第14回 下野 台湾:歷史 第15回 下野 台湾:社会

※都合により変更もあり得る。変更がある場合は授業で指示する。

成績評価の方法 /Assessment Method

小テスト(7~14回)100% ※小テストは原則として各回実施しますが、詳細は各担当者が指示します。

事前・事後学習の内容 /Preparation and Review

各回の担当者の指示に従ってください。授業終了後には復習を行ってください。

現代の国際情勢

履修上の注意 /Remarks

この授業は、複数の教員が、各自の専門と関心から国際関係や地域の情勢を論じるオムニバス授業です。授業テーマと担当者については初回授 業で紹介します。

授業の最後に小テストを受けます。授業中は集中して聞き、質問があればその回のうちに出してください。

担当者からのメッセージ /Message from the Instructor

この授業では今の国際情勢を様々な角度から取り上げていきます。授業を通じて自分の視野を広げていくきっかけにしてください。

キーワード /Keywords

グローバル化する経済

担当者名 田中 淳平 / TANAKA JUMPEI / 経済学科, 前田 淳 / MAEDA JUN / 経済学科 /Instructor 柳井 雅人 / Masato Yanai / 経済学科, 前林 紀孝 / Noritaka Maebayashi / 経済学科 魏 芳 / FANG WEI / 経済学科, 高橋 秀直 / マネジメント研究科 専門職学位課程

鳥取部 真己/マネジメント研究科 専門職学位課程

履修年次 1年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 /Year of School Entrance \circ \circ \circ O \circ

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

※お知らせ/Notice この科目は北方・ひびきの連携科目です。北方キャンパスで開講されます。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation) , Specific Targets in Focus

学位授与	- 方針における能力		到達目標					
知識・理解	総合的知識・理解	•	国際経済の諸問題を社会・文化と関わらせつつ理解するための基本的な知識を持っている。					
	情報リテラシー							
 技能	数量的スキル							
1XRE	英語力							
	その他言語力							
思考・判断・表現	課題発見・分析・解決力 ●	•	国際経済の諸問題を発見し、解決策を自立的に提示することができる。					
	自己管理力							
	社会的責任・倫理観							
関心・意欲・態度	生涯学習力 ●	•	国際経済の諸問題に常に関心と興味を持ち、知識を自主的に探求する姿勢が身について る。					
	コミュニケーション力							

グローバル化する経済 ECN001F

授業の概要 /Course Description

今日の国際経済を説明するキーワードの一つが、グローバル化である。この講義では、グローバル化した経済の枠組み、グローバル化によって 世界と各国が受けた影響、グローバル化の問題点などを包括的に説明する。日常の新聞・ニュースに登場するグローバル化に関する報道が理解 できること、平易な新書を理解できること、さらに、国際人としての基礎的教養を身につけることを目標とする。複数担当者によるオムニバス 形式で授業を行う。

教科書 /Textbooks

使用しない。

/Department

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

なし。

授業計画・内容 /Class schedules and Contents

- 1回 イントロダクション-グローバル化とは何か
- 2回 自由貿易【比較優位】【貿易の利益】【保護貿易】
- 3回 地域貿易協定【自由貿易協定】【関税同盟】【経済連携協定】
- 4回 企業の海外進出と立地(1) 【直接投資】
- 5回 企業の海外進出と立地(2) 【人件費】 【為替レート】
- 6回 海外との取引の描写 【経常収支と資本移動について】
- 7回 先進国と途上国間の資本移動 【経済成長と資本移動について】
- 8回 企業の国際展開(1) 【グローバル企業の類型】 【グローバル統合】 【ローカル適応】
- 9回 企業の国際展開(2) 【イノベーション】 【ブランド】
- 10回 グローバル化と人材(1) 【JIT】【海外生産】【熟練】
- 11回 グローバル化と人材(2) 【派遣・請負】【OJT】【Off-JT】
- 12回 国際労働移動(1)【移民と所得分配】【移民の移動パターン】
- 13回 国際労働移動(2)【移民と財政】【移民の経済的同化】【日本における外国人労働の受け入れ】
- 14回 グローバル化の要因とメリット【消費者余剰】
- 15回 グローバル化のデメリット【所得格差】【金融危機の伝染】

基盤教育科目 教養教育科目 人文・社会

成績評価の方法 /Assessment Method

学期末試験: 100%。

事前・事後学習の内容 /Preparation and Review

授業内容の復習を行うこと、また授業の理解に有益な読者や映像視聴などを行うこと。

履修上の注意 /Remarks

経済関連のニュースや報道を視聴する習慣をつけてほしい。授業で使用するプリントは北方Moodleにアップするので、きちんと復習すること。

担当者からのメッセージ /Message from the Instructor

キーワード /Keywords

2019

歴史の読み方Ⅱ

担当者名 小林 道彦 / KOBAYASHI MICHIHIKO / 基盤教育センター

/Instructor

 履修年次
 1年次
 単位
 2単位
 学期
 1学期
 授業形態
 講義
 クラス

 /Year
 /Credits
 /Semester
 /Class Format
 /Class

 対象入学年度
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018

/Department

※お知らせ/Notice この科目は北方・ひびきの連携科目です。北方キャンパスで開講されます。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	-方針における能力		到達目標
知識・理解	総合的知識・理解	•	史料や文献を講読することを通じて、歴史の見方の多様性を総合的に理解する。
	情報リテラシー		
技能	数量的スキル		
IXHE	英語力		
	その他言語力		
思考・判断・表現	課題発見・分析・解決力	•	史料や文献を講読することを通じて、歴史の中に問題を発見・分析する能力を涵養する ことができる。
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力	•	史料や文献を講読することを通じて、幅広い歴史の見方を涵養するための学びを継続す ることができる。
	コミュニケーション力		

歴史の読み方I HISO05 F

授業の概要 /Course Description

司馬遼太郎『坂の上の雲』で、「戦術的天才」として描き出された児玉源太郎(日露戦争時の満州軍総参謀長、台湾総督)の実像に実証的に迫り、その生涯をたどることを通じて、歴史小説と政治外交史研究との関係について思いをめぐらすきっかけを作りたい。要するに、「歴史認識とはいったい何か」という問題を考察していく。

教科書 /Textbooks

小林道彦『児玉源太郎 - そこから旅順港は見えるか』(ミネルヴァ書房、3000円税別)。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

〇小林道彦『桂太郎 - 予が生命は政治である』(ミネルヴァ書房)。その他、講義中に適宜指示します。

授業計画・内容 /Class schedules and Contents

- 第1回 イントロダクション
- 第2回 政治的テロルの洗礼 徳山殉難七士事件 ~ 佐賀の乱 -
- 第3回 危機管理者 神風連の乱・西南戦争 -
- 第4回 雌伏の日々 佐倉にて -
- 第5回 洋行と近代陸軍の建設
- 第6回 陸軍次官 英米系知識人との出会い -
- 第7回 台湾経営 後藤新平の登場 -
- 第8回 政治との関わり 第一次桂内閣
- 第9回 陸軍改革の模索 大山巌・山県有朋との対立・協調 -
- 第10回 日露戦争 統帥権問題の噴出 -
- 第11回 旅順攻防戦 明治国家の危機 -
- 第12回 児玉は「天才的戦術家」だったか 危機における人間像 -
- 第13回 「憲法改革」の頓挫
- 第14回 歴史小説と政治史研究の間
- 第15回 まとめ

成績評価の方法 /Assessment Method

日常的な講義への取り組み…20%期末試験…80%

事前・事後学習の内容 /Preparation and Review

授業開始前までに予め教科書の該当箇所に目を通しておくこと。授業終了後には講義ノートを参照しながら教科書を再読すること。

基盤教育科目 教養教育科目 人文・社会

歴史の読み方Ⅱ

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

キーワード /Keywords

地球環境システム概論

(Introduction to Environmental Systems)

/Instructor

履修年次 1年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	-方針における能力		到達目標
知識・理解	□識·理解 総合的知識·理解 ● は		地球環境システムの様々な問題について基本的な知識及び考え方を修得する。
	情報リテラシー		
技能	数量的スキル	•	地球環境の現状について定量的に認識する能力を身につける。
	英語力		
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
 関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

地球環境システム概論 ENV103F

授業の概要 /Course Description

地球環境(水環境を中心に大気,土壌,生態系,資源・エネルギーなど)の歴史から現状(発生源,移動機構,環境影響,対策など)を国土や 地球規模からの視点で概観できるような講義を行い,環境保全の重要性を認識できるようにする.

教科書 /Textbooks

地球環境学入門 第2版 (講談社)

参考書(図書館蔵書には 〇) /References(Available in the library: 〇)

なし

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス・地球環境
- 2 地球の成り立ち
- 3 物質の循環
- 4 水の循環,海洋の循環
- 5 地球上の資源
- 6 資源・エネルギー
- 7 廃棄物とリサイクル
- 8 地球温暖化
- 9 海を守る (海洋汚染,赤潮青潮)
- 10 森を守る(環境と植生)
- 11 大気を守る (大気汚染問題)
- 12 大地を守る (土壌汚染問題)
- 13 環境再生の事例
- 14 社会と環境1 (北九州市における環境の取組み)
- 15 社会と環境2 (福岡市における再生水利用の取組み)

成績評価の方法 /Assessment Method

レポート・演習 40% 期末試験 60%

事前・事後学習の内容 /Preparation and Review

授業学習する内容の一部について予め調査を行う事前学習を課すことがある また,授業で学習した内容の一部について演習や復習等をおこなう事後学習を課すことがある

履修上の注意 /Remarks

授業の最後に20分程度の演習を実施するので、各授業を集中して聞くこと。

地球環境システム概論

(Introduction to Environmental Systems)

担当者からのメッセージ /Message from the Instructor

地球環境に対する問題意識や将来展望を持つことは、あらゆる専門分野で必要不可欠なものになりつつあります。講義項目は、多岐にわたりますが、現状と基本的な考え方が理解できるような講義を行います。皆さんの将来に必ずプラスになるものと確信しています。

キーワード /Keywords

実務経験のある教員による授業

エネルギー・廃棄物・資源循環概論

(Introduction to Resources Recycling)

大矢 仁史 / Hitoshi OYA / エネルギー循環化学科 (19~), 伊藤 洋 / Yo ITO / エネルギー循環化学科

/Instructor $(19 \sim)$

安井 英斉 / Hidenari YASUI / エネルギー循環化学科 (19~)

履修年次 2年次 単位 2単位 受加 2学期 授業形態 クラス 講義 /Credits /Class Format /Class /Year /Semester

2013 | 2014 | 2015 | 2016 2018 2019 対象入学年度 2008 2010 2011 2017 2009 2012 /Year of School Entrance \circ \bigcirc \circ \cap

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	-方針における能力		到達目標
知識・理解	総合的知識・理解	•	資源の循環利用に必要な専門的知識を修得する。
	情報リテラシー		
技能	数量的スキル	•	資源の循環利用などに関する数量的知識を修得する。
	英語力		
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
 関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

エネルギー・廃棄物・資源循環概論

ENV201F

授業の概要 /Course Description

|廃棄物減量、資源循環を実現するために資源、エネルギー全般、廃棄物全般を概説する。また、それらを背景として取り組んでいるリサイクル |システム(マテリアル、エネルギー、排水・廃棄物など)について、資源、エネルギー回収と処理の観点からそれぞれの技術や社会的な仕組み を概観できるような講義を行い、科学技術が持続可能な社会形成に果たす役割を理解できるようにする。

教科書 /Textbooks

特に指定せず、必要に応じて講義の都度資料を配付する

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

講義中に適宜指示する

授業計画・内容 /Class schedules and Contents

- 1 資源、エネルギー概論
- 2 廃棄物概論
- 3 リサイクルと3R
- 4 リサイクル技術 1 (回収物の評価方法)
- 5 リサイクル技術 2 (単体分離技術)
- 6 リサイクル技術 3 (物理的分離技術)
- 7 リサイクル技術 3 (化学的分離技術)
- 8 生物学的排水処理システムの基礎
- 9 物質の循環(生態系における炭素・窒素・リンの循環)
- 10 生物学的排水処理システム 1 (窒素除去活性汚泥法)
- 11 生物学的排水処理システム 2 (活性汚泥法)
- 12 生物学的排水処理システム 3 (リンの生物学的除去)
- 13 主な汚濁物質の分析方法
- 14 汚濁物質除去の計算
- 15 最終処分場と不法投棄

成績評価の方法 /Assessment Method

レポート・演習 60%

試験 40%

事前・事後学習の内容 /Preparation and Review

講義資料やノートを用いて十分な復習を行うことが必要である。

エネルギー・廃棄物・資源循環概論

(Introduction to Resources Recycling)

履修上の注意 /Remarks

講義中に配付した資料を見直し、次の講義への準備をしておくことが必要である。 演習による理解度評価を行う。

担当者からのメッセージ /Message from the Instructor

リサイクル・水・廃棄物処理に関する体系的な知識が習得できる。

キーワード /Keywords

環境問題特別講義

(Introductory Lecture Series on Environmental Issues)

担当者名 森本 司 / Tsukasa MORIMOTO / 基盤教育センターひびきの分室, 藍川 昌秀 / Masahide AlKAWA / エネルギ /Instructor ー循環化学科(19~)

山本 勝俊 / Katsutoshi YAMAMOTO / エネルギー循環化学科(19~), 宮國 健司 / Takeshi MIYAGUNI / 機械システム工学科(19~)

玉田 靖明 / Yasuaki TAMADA / 情報システム工学科(19~), 藤本 悠介 / Yusuke FUJIMOTO / 情報システム工学科(19~)

藤田 慎之輔 / Shinnosuke FUJITA / 建築デザイン学科(19~), 望月 慎一 / Shinichi MOCHIZUKI / 環境生命工学科(19~)

藤山 淳史 / Atsushi FUJIYAMA / 環境生命工学科 (19~)

履修年次 1年次 単位 1単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
					0	0	0	0	0	0	

対象学科 【必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

/Department

授業の概要 /Course Description

現代社会で生活する限り環境問題を避けて通ることはできない。この授業では、大学の教育や研究の基礎を学ぶとともに、見学や専門家の話を 通して、地域環境や社会環境も含めた環境問題を身近なところから学習する。

この授業は、

- (1) 大学教育の基礎
- (2) 環境問題の基礎
- (3)「環境問題事例研究」の準備
- の三本柱で構成される。

大学教育の基礎では、大学での教育研究の紹介、またレポート作成の意味やその仕方を説明する(研究倫理を含む)。環境問題の基礎では、施設 見学や専門講師の講義で学習する。そして、「環境問題事例研究」の準備では、チームによる調査・研究のための準備作業を行う。

教科書 /Textbooks

授業ではプリントを配布する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

日本消費生活アドバイザー・コンサルタント協会編著「エコアクションが地球を救う!第2版」丸善

北九州市環境首都研究会編著「環境首都 - 北九州市」日刊工業新聞社

米本昌平「地球環境問題とは何か」岩波新書

門脇仁「最新環境問題の基本がわかる本「第2版]」秀和システム

ほか授業中に紹介する。

授業計画・内容 /Class schedules and Contents

- 1 履修説明・大学における教育(初年次教育・研究倫理1)
- 2 本学の教育と研究1(本学の3つの学科)
- 3 本学の教育と研究2(本学の2つの学科と環境技術研究所)
- 4 北九州市の環境政策
- 5 環境問題についての研究発表について
- 6 環境問題と市民の役割
- 7 環境問題と企業の役割
- 8 環境問題と行政の役割
- 9 環境問題と環境教育
- 10 自然史・歴史博物館(いのちのたび博物館)の見学と講義(レポートの書き方・研究倫理2)
- 11 エコタウン施設の見学
- 12 環境問題事例研究ガイダンス①(チーム編成)
- 13 環境問題事例研究ガイダンス②(研究テーマの検討)
- 14 環境問題事例研究ガイダンス③(テーマ決定、情報収集)
- 15 環境問題事例研究ガイダンス①(夏期休暇中の活動)・まとめ

(講義の順番は講師の都合により入れ替る)

成績評価の方法 /Assessment Method

積極的な授業参加 35%(講義内容のまとめや質問等も評価する)

授業課題レポート 35%(レポートは,講義内容や施設見学に関するもの)

最終レポート 30%

事前・事後学習の内容 /Preparation and Review

講義や演習の内容を理解するために、授業内容の復習を必ず行うこと。

施設見学(博物館、エコタウン)では、レポート課題について自分で考察・まとめを行うこと。

環境問題特別講義

(Introductory Lecture Series on Environmental Issues)

履修上の注意 /Remarks

講義内容に関する演習、小論文、課題提出等を課す。常に授業への集中力を持続すること。

課題提出に際しては、授業でも注意を行うが、他人の課題内容を複製したりしないこと。

講師の都合等で、講義内容に変更が生じる場合がある。土曜日に施設見学を行う。

外部講師への質問に対する回答を掲示する(オンライン学習システム)ので、各自で確認すること。

環境問題事例研究ガイダンスに関連して、授業時間外でのチーム作業があるので、協力して行うこと。

担当者からのメッセージ /Message from the Instructor

講義内容のノート・メモをとり、聴きながら整理する習慣をつけ、学校生活のペースを身につけること。そのためには、講義内容に関係した記事を新聞雑誌で読んだり、参考書で学習すること、友人と意見交換することを奨める。また、自分で考察することに大きな意味がある。

キーワード /Keywords

リテラシー 環境問題 生態系 エネルギー消費 北九州市 エコタウン 実務経験のある教員による授業

生物学

(Biology)

担当者名

原口 昭 / Akira HARAGUCHI / 環境生命工学科(19~)

/Instructor

履修年次 1年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2013 2014 2016 2018 2008 2009 2010 2011 2012 2015 2017 2019 0 \circ 0 Ο O \circ

対象学科

【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	総合的知識・理解	•	生物学の基礎に関する内容について、自分の言葉で説明することができる。		
	情報リテラシー				
技能	数量的スキル	•	物の階梯について定性的に理解する。		
	英語力				
思考・判断・表現	課題発見・分析・解決力				
関心・意欲・態度	自己管理力				
	社会的責任・倫理観				
	生涯学習力				
	コミュニケーション力				

生物学	BIO111F
-----	---------

授業の概要 /Course Description

生物学の導入として、(1)細胞の構造と細胞分裂、(2)遺伝、(3)生殖と発生、(4)系統進化と分類、(5)生物の生理、の各分野について概説します。本講義では、生物学を初めて学ぶ者にも理解できるように基本的な内容を平易に解説し、全学科の学生を対象に自然科学の一般教養としての生物学教育を行います。

本講義は、環境生命工学科・専門教育科目(工学基礎科目)の「生物学」と同時開講されますが、最も基本的な内容を講義します。講義内容は、2018年度まで開講されていた基盤教育科目・教養教育科目(環境)の「生物学」と同内容です。

教科書 /Textbooks

生物学(スター) 八杉貞雄 監訳、東京化学同人 ISBN 978 4 8079 0836 3

* 教科書は、予習、復習、発展学習のために用意してください。講義の中では、本書の図版を参照しつつ授業を進めます。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

講義の中で適宜指示します

授業計画・内容 /Class schedules and Contents

- 1 生体構成物質
- 2 細胞の構造
- 3 細胞の機能
- 4 細胞分裂
- 5 遺伝の法則
- 6 遺伝子
- 7 ヒトの遺伝
- 8 適応
- 9 進化
- 10 系統分類
- 11 生殖
- 12 動物の発生
- 13 植物の発生
- 14 刺激と反応
- 15 恒常性の維持

なお、講義の項目と順序は変更する場合があります。

生物学

(Biology)

成績評価の方法 /Assessment Method

期末試験 80% 絶対評価します

課題 20% 講義期間中に随時課します

本講義は、環境生命工学科・専門教育科目(工学基礎科目)の「生物学」と同時開講されますが、成績評価基準はこれより相当程度低く設定します(2018年度まで開講されていた基盤教育科目・教養教育科目(環境)の「生物学」と同程度です)。安心して受講してください。

事前・事後学習の内容 /Preparation and Review

事前学習は必要ありませんが、当日の講義のタイトルを教科書で確認しておくと良いでしょう。講義の後は、講義で扱った教科書の範囲を一読 してください。

履修上の注意 /Remarks

平易な解説を行いますが、講義はすべて積み重ねですので、一部の理解が欠如するとその後の履修に支障が生じます。そのため、毎回の講義を 受講し、その場ですべてを完全に理解するように心がけてください。 生物学の理解のためには、化学、物理学の基礎的知識が必要です。本講義 では、生物学を初めて学ぶ学生にも理解できるような平易な解説を行いますが、高校までの化学、物理学の知識は再確認しておいてください。

担当者からのメッセージ /Message from the Instructor

生物学が好きな学生、嫌いな学生ともに、基礎から学べるような講義を行います。すでに生物学を学んだことのある人は再確認を行い、また生物学初学者は基礎をしっかりと身につけてください。

キーワード /Keywords

細胞・遺伝・系統分類・進化・発生・生理

生態学

(Ecology)

担当者名 原口

原口 昭 / Akira HARAGUCHI / 環境生命工学科(19~)

/Instructor

履修年次 1年次 単位 2単位 学期 2学期 授業形態 講義 クラス Year /Credits /Semester /Class Format /Class

対象入学年度

/Year of School Entrance

2013 2014 2015 2016 2018 2008 2009 2010 2011 2012 2017 2019 0 \circ \circ O O 0

対象学科 【必修】 環境生命工学科【選択】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイ

/Department ン学科

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	総合的知識・理解	•	生態学にかかわる基礎的内容について各自の言葉で説明することができる。		
	情報リテラシー				
技能	数量的スキル	•	上態現象を支配する理論に関して、定性的にその概念を理解する。		
	英語力				
思考・判断・表現	課題発見・分析・解決力				
	自己管理力				
関心・意欲・態度	社会的責任・倫理観				
	生涯学習力				
	コミュニケーション力				
·					

生態学 BI0112F

授業の概要 /Course Description

生態系は、私たち人間も含めた生物と環境との相互作用によって成り立っています。この相互作用の基本となるものは物質とエネルギーで、生態系における物質・エネルギーの挙動と生物との関係を正しく理解する事が、諸々の環境問題の正しい理解とその解決策の検討には不可欠です。本講義では、このような観点から、(1)生態系の構造と機能、(2)個体群と生物群集の構造、(3)生物地球化学的物質循環、を中心に生態学の基礎的内容を講述します。

本講義は、環境生命工学科・専門教育科目(工学基礎科目)の「生態学」と同時開講されますが、最も基本的な内容を講義します。講義内容は、2018年度まで開講されていた基盤教育科目・教養教育科目(環境)の「生態学」と同内容です。

教科書 /Textbooks

生態学入門 -生態系を理解する- 第2版 (原口昭 編著) 生物研究社 ISBN 978 4 915342 71 4

*講義内容をまとめた教科書ですので、予習、復習に利用してください。講義の中では、図版を参照しつつ授業を進めます。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

- ○日本の湿原(原口昭 著)生物研究社 ISBN 978 4 915342 67 7
- ○攪乱と遷移の自然史(重定・ 露崎編著)北海道大学出版会 ISBN 978 4 8329 8185 0
- ○湿地の科学と暮らし(矢部・山田・牛山 監修) 北海道大学出版会 ISBN 978 4 8329 8222 4

ほか必要に応じて講義の中で指示します

生熊学

(Ecology)

授業計画・内容 /Class schedules and Contents

- 1 地球環境と生物 生態系の成り立ち
- 2 生態系の構成要素 生物・環境・エネルギー
- 3 生物個体群の構造
- 4 種内関係
- 5 生態的地位
- 6 種間関係
- 7 生態系とエネルギー
- 8 生態系の中での物質循環
- 9 生態系の分布
- 10 生態系の変化 生態遷移
- 11 土壌の成り立ちと生物・環境相互作用
- 12 生態系各論:森林生態系
- 13 生態系各論:陸水生態系
- 14 生態系各論:熱帯生態系
- 15 生態系各論:エネルギー問題と生態系
- ・講義内容と順序は変更になる場合があります。
- ・本講義では3回の休講が予定されています。なるべく補講・代講で対応しますが、代講の際は講義内容が変更になります。

成績評価の方法 /Assessment Method

期末テスト80% 絶対評価します

レポート 20% 講義中に随時実施します

本講義は、環境生命工学科・専門基礎科目(工学基礎科目)と同時開講されますが、成績評価基準はこれより相当程度低く設定します (2018年度まで開講されていた基盤教育科目・教養教育科目(環境)の「生態学」と同程度です)。安心して受講してください。

事前・事後学習の内容 /Preparation and Review

事前学習は必要ありませんが、当日の講義のタイトルを教科書で確認しておくと良いでしょう。講義の後は、講義で扱った教科書の範囲を一読 してください。

履修上の注意 /Remarks

各回の講義の積み重ねで全体の講義が構成されていますので、毎回出席して、その回の講義は完全に消化するよう努めてください。 工学系の学生にとっては初めて学習する内容が多いと思いますが、何よりも興味を持つことが重要です。そのために、生態系や生物一般に関する啓蒙書を読んでおくことをお勧めします。

【再掲】本講義では3回の休講が予定されていますが、なるべく補講・代講で対応します。

担当者からのメッセージ /Message from the Instructor

環境問題を考える上で生物の機能は不可欠な要素です。これまで生態系に関する講義を履修してこなかった学生に対しても十分理解できるよう に平易に解説を行いますので、苦手意識を持たずに取り組んでください。

キーワード /Keywords

生態系・生物群集・個体群・エネルギー・物質循環・生態系保全

環境マネジメント概論

(Introduction to Environmental Management)

担当者名 松本 亨 / Toru MATSUMOTO / 環境技術研究所, 野上 敦嗣 / Atsushi NOGAMI / 環境生命工学科(19~) /Instructor 二渡 了 / Tohru FUTAWATARI / 環境生命工学科(19~), 加藤 尊秋 / Takaaki KATO / 環境生命工学科

(19~)

藤山 淳史 / Atsushi FUJIYAMA / 環境生命工学科 (19~)

履修年次 2年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 /Year of School Entrance O O O O

対象学科 【選択】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	総合的知識・理解	•	環境マネジメントのスキルとして、環境問題の現状把握・将来予測・管理手法等に関する基礎的専門知識を修得する。		
	情報リテラシー				
技能	数量的スキル				
	英語力				
思考・判断・表現	課題発見・分析・解決力	•	環境問題に対して、改善のための目標をどのように設定し、対策を施し、進行管理を行うか、企業や行政の現場で直面する具体的な事例をもとに理解する。		
	自己管理力				
関心・意欲・態度	社会的責任・倫理観	•	工学の環境問題に対する社会的責任と倫理観を理解し、社会に出て技術者として何か きるか考える基礎とする。		
	生涯学習力				
	コミュニケーション力				

環境マネジメント概論 ENV212F

授業の概要 /Course Description

多様な要素が関係する環境問題を解きほぐし、その対策・管理手法を考えるための基礎知識を修得することが目標である。まず、人間活動がどのように環境問題を引き起こしているのか、その本質的原因を知るために、経済システムや都市化、工業化、グローバリゼーションといった視点から環境問題を捉える。次に、環境の現況把握のための評価手法、目標設定のための将来予測の考え方を学び、さらに、環境マネジメントの予防原則に則った法制度、国際規格、環境アセスメント、プロジェクト評価手法、環境リスク管理等の基礎を習得する。

教科書 /Textbooks

特に指定しない(講義ではプリントを配付する)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

環境システム(土木学会環境システム委員会編、共立出版)〇 環境問題の基本がわかる本(門脇仁、秀和システム)〇

授業計画・内容 /Class schedules and Contents

- <環境問題を考える視点>
- 1 環境システムとそのマネジメント(松本)
- <環境問題の原因を考える>
- 2 都市化・工業化・国際化(二渡)
- 3 市場と外部性(加藤)
- <環境の状態をつかみ目標を決める>
- 4 地域環境情報の把握と環境影響予測(野上)
- 5 製品・企業の環境パフォーマンス(藤山)
- 6 地球環境の把握と将来予測(松本)
- 7 経済学的手法による予測(加藤)
- <環境をマネジメントする>
- 8 国内・国際法による政策フレーム(藤山)
- 9 国際規格による環境管理(二渡)
- 10 開発事業と環境アセスメント(野上)
- 11 環境関連プロジェクトの費用と便益(加藤)
- 12 環境リスクとその管理(二渡)
- 13 環境情報とラベリング(藤山)
- <事例研究>
- 14 企業(野上)
- 15 行政(松本)

環境マネジメント概論

(Introduction to Environmental Management)

成績評価の方法 /Assessment Method

毎回の小テスト 42% 期末試験 58%

※2/3以上出席すること

事前・事後学習の内容 /Preparation and Review

事前学習は特に必要ないが、毎回の講義を十分に理解するよう事後の復習に努めること。

履修上の注意 /Remarks

毎回の講義の最後にその回の内容に関する小テストを実施するので集中して聞くこと。

欠席すると必然的に小テストの得点はゼロとなる。

小テストは講義の最後なので、早退の場合も欠席同様、小テストの得点はゼロとなるので注意が必要である。

30分以上の遅刻は、欠席扱いとする。

担当者からのメッセージ /Message from the Instructor

環境生命工学科環境マネジメント分野の教員全員による講義です。環境問題の本質をつかみ、理解し、解決策を見出すための理念と基礎手法を解説します。工学部出身者として、今やどの分野で活躍する場合でも習得しておくべき知識と言っていいでしょう。

キーワード /Keywords

実務経験のある教員による授業

環境と経済

(The Environment and Economics)

担当者名 加藤 尊秋 / Takaaki KATO / 環境生命工学科(19~)

/Instructor

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance \circ O О Ο O Ο

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標			
知識・理解	総合的知識・理解					
	情報リテラシー					
技能	数量的スキル	•	社会的な現象を数理モデルを使って分析するための枠組みを理解する。			
	英語力					
思考・判断・表現	課題発見・分析・解決力	•	環境問題の対策について、経済学的な視点から基本的な考察することができる。			
	自己管理力					
関心・意欲・態度	社会的責任・倫理観		環境問題に関わるステークホルダーの立場に配慮しつつ、望ましい解決に向かうため 考え方を身につける。)の		
	生涯学習力					
	コミュニケーション力					
			環境と経済 ENV21	1F		

授業の概要 /Course Description

環境問題に関し、経済学的な観点から、社会にとって良い政策とは何かを考える。 2 部構成とし、第一部では、ミクロ経済学の知識を必要な範囲で伝授する。第二部では、環境税や排出権取引のしくみを説明する。実際の政策の議論では、さまざまな論点が混じり合い、これらの対策の本来の意義が見えにくくなっているので、原点に立ち返ることを学ぶ。

教科書 /Textbooks

説明用のプリントを配付します。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業の進度に応じて紹介します。

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス:環境問題と経済学
- 2 需要曲線と消費者余剰
- 3 費用と供給曲線1【費用の概念】
- 4 費用と供給曲線2【供給曲線の導出】
- 5 供給曲線と生産者余剰
- 6 市場と社会的余剰1【市場の機能】
- 7 市場と社会的余剰2【社会的余剰の算出】
- 8 中間テストと前半の復習
- 9 環境問題と環境外部性
- 10 環境税のしくみ1【社会的余剰最大化】
- 11 環境税のしくみ2【汚染削減費用最小化】
- 12 排出権取引のしくみ1【汚染削減費用最小化】
- 13 排出権取引のしくみ2【初期配分の意義】
- 14 環境税と排出権取引の比較
- 15 事例紹介

成績評価の方法 /Assessment Method

積極的な授業参加 30% 小テスト・中間テスト 20% 期末テスト 35% レポート 15%

事前・事後学習の内容 /Preparation and Review

翌週の授業に関わる社会的事象の整理を事前に行ってください。また、講義後には、講義内容の復習を行ってください。

環境と経済

(The Environment and Economics)

履修上の注意 /Remarks

各回の授業終了時に復習や次回の講義に向けた予習として読むべき資料を提示するので、各自学習を行うこと。 高校レベルの微分積分および基本的な偏微分の知識を前提とします。

担当者からのメッセージ /Message from the Instructor

環境問題に対する経済学的対処法に興味がある人は、ぜひ受講してください。理解促進のために5回程度の小テストを実施予定です。公務員試験を受ける人は、ミクロ経済学の勉強にもなります。

キーワード /Keywords

環境都市論

(Urban Environmental Management)

担当者名 松本 亨 / Toru MATSUMOTO / 環境技術研究所

/Instructor

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance \circ O \circ O O O

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	総合的知識・理解 ・		都市の環境問題の発生と対策・政策の理解に必要な基礎的専門知識を修得する。		
	情報リテラシー				
技能	数量的スキル				
	英語力				
思考・判断・表現	課題発見・分析・解決力	•	都市環境問題に対して、どのように生産・消費等の人間活動が原因や解決に関わってい るのかを理解する。		
	自己管理力				
関心・意欲・態度	社会的責任・倫理観				
	生涯学習力				
	コミュニケーション力				

環境都市論 ENV213F

授業の概要 /Course Description

アジア各国で進行している産業化、都市化、モータリゼーション、消費拡大とそれらに起因する環境問題には、多くの類似性が見られる。日本 の経済発展と環境問題への対応は、現在、環境問題に直面するこれらの諸国への先行モデルとして高い移転可能性を持つ。本講では、北九州市 を中心とした日本の都市環境政策を題材に、環境問題の歴史と対策を紐解き、その有効性と適用性について考える。

教科書 /Textbooks

特に指定しない(講義ではプリントを配付する)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

東アジアの開発と環境問題(勝原健、勁草書房)

その他多数(講義中に指示する)

授業計画・内容 /Class schedules and Contents

- 1 イントロ(松本亨)
- 2 日本の環境政策の歴史的推移(松本 亨)
- 3 都市の土地利用・土地被覆と熱環境(崇城大学・上野賢仁教授)
- 4 南筑後地域のプラスチックリサイクルの取組について(株式会社TRES・松野尾淳代表取締役社長)
- 5 都市交通をめぐる環境問題とその総合対策(九州工業大学・寺町賢一准教授)
- 6 北九州の生物をめぐる水辺環境の問題(エコプラン研究所・中山歳喜代表取締役所長)
- 7 水資源と都市型水害(福岡大学・渡辺亮一准教授)
- 8 都市の水循環(松本 亨)
- 9 再生可能エネルギーの産業化と低炭素社会を目指す九州の取組(九州経済調査協会・松嶋慶祐研究主査)
- 10 アフリカの廃棄物事情と国際協力(北九州産業学術推進機構・三戸俊和部長)
- 11 都市の物質循環(松本 亨)
- 12 建築物の省エネルギー対策 (C・E・エンジニアリング・中村秀昭代表)
- 13 食品ロスとフードバンクの役割(フードバンク北九州・ライフアゲイン・原田昌樹代表)
- 14 ソーシャルビジネス概論~社会を変えるアイデア~(西日本産業貿易コンベンション協会・古賀敦之課長)
- 15 環境対策の包括的評価(松本 亨)

成績評価の方法 /Assessment Method

平常点(授業への積極的参加)10% ※2/3以上出席すること

毎回の復習問題 60%

期末試験 30%

事前・事後学習の内容 /Preparation and Review

事前学習は特に必要ないが、毎回の講義を十分に理解するよう事後の復習に努めること。

環境都市論

(Urban Environmental Management)

履修上の注意 /Remarks

毎回の講義の最後にその回の内容に関する復習問題(選択式)を実施するので集中して聞くこと。

欠席すると必然的にこの得点がゼロとなるので注意。

復習問題は講義の最後なので、早退の場合も欠席同様、復習問題の得点はゼロとなるので注意が必要である。

30分以上の遅刻は、欠席扱いとする。

担当者からのメッセージ /Message from the Instructor

北九州市あるいは九州の環境への取り組みの現状と課題について、その第一線で関わってこられた研究者、企業、NPO等の担当者に講述していただきます。学生諸君は、北九州市で過ごした証に、北九州市の環境政策について確実な知識と独自の視点を有して欲しい。

キーワード /Keywords

実務経験のある教員による授業

環境問題事例研究

(Case Studies of Environmental Issues)

担当者名 /Instructor 森本 司 / Tsukasa MORIMOTO / 基盤教育センターひびきの分室, 藍川 昌秀 / Masahide AlKAWA / エネルギー循環化学科(19~)

山本 勝俊 / Katsutoshi YAMAMOTO / エネルギー循環化学科(19~), 宮國 健司 / Takeshi MIYAGUNI / 機械システム工学科(19~)

池田 卓矢 / Takuya IKEDA / 機械システム工学科(19~), 玉田 靖明 / Yasuaki TAMADA / 情報システム工学科(19~)

藤本 悠介 / Yusuke FUJIMOTO / 情報システム工学科(19~), 白石 靖幸 / Yasuyuki SHIRAISHI / 建築デザイン学科(19~)

藤田 慎之輔 / Shinnosuke FUJITA / 建築デザイン学科(19~), 望月 慎一 / Shinichi MOCHIZUKI / 環境生命工学科(19~)

/Class Format

藤山 淳史 / Atsushi FUJIYAMA / 環境生命工学科 (19~)

履修年次 1年次

単位 /Credits 2単位

学期

/Semester

2学期

授業形態 演習

クラス /Class

2018 2019

2017

対象入学年度

N家八子午及 /Year of School Entrance 2008 2009 2010 2011 2012 2013 2014 2015 2016 O O O

対象学科

/Year

【必修】 エネルギー循環化学科、機械システムエ学科、情報メディアエ学科、建築デザイン学科、環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	総合的知識・理解	•	環境問題をテーマにした調査研究活動とチーム活動を実践することができる。		
	情報リテラシー				
技能	数量的スキル				
	英語力				
思考・判断・表現	課題発見・分析・解決力	•	チームによる調査研究活動を通じて、問題を発見し解決するためのプロセスを設計する ことができる。		
	自己管理力				
	社会的責任・倫理観				
関心・意欲・態度	生涯学習力	•	社会生活に適用できる知識や技能を修得することができる。		
	コミュニケーション力	•	チーム活動を通して、情報の伝達や共有の作法が身につく。		

環境問題事例研究 ENV102F

授業の概要 /Course Description

環境問題の本質を理解し、解決への糸口を見つける最善の方法は、直接現場に接することである。そして、多様な要素の中から鍵となる因子を 抽出し、なぜ問題が発生したのかを考える。この環境問題事例研究では、チームごとに独自の視点で問題の核心を明らかにし、目標設定、調査 手法選択、役割分担などの検討を経て、自主的に調査研究を進め、研究成果のとりまとめ・発表を行う。

教科書 /Textbooks

環境問題特別講義の教科書及びその中で紹介されている書籍、関連Webサイトを参考にすること。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

その他、参考となる書籍等については、その都度紹介する。

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス
- 2 研究計画の発表
- 3 調査研究の実施
- 4 調査研究の実施 5 調査研究の実施
- 6 中間発表会
- 7 調査研究の実施
- 8 調査研究の実施
- 9 発表準備、調査研究とりまとめ
- 10 発表準備会、調査研究とりまとめ
- 11 第1次発表会(口頭発表)
- 12 調査研究とりまとめ、調査研究報告書作成
- 13 第2次発表チームの発表、調査研究とりまとめ
- 14 第2次発表会(口頭発表、ポスター発表)
- 15 表彰式

環境問題事例研究

(Case Studies of Environmental Issues)

成績評価の方法 /Assessment Method

調査研究活動や発表等 50% チーム内での貢献度を評価する。 成果発表や報告書の成績 50% チーム内での貢献度を評価する。 以上を個人単位で評価する。

事前・事後学習の内容 /Preparation and Review

授業前には、1週間の活動記録を記入すること。

授業後には、話し合った内容、活動内容を記録し、ウィークリーレポートの記入内容をまとめておくこと。

履修上の注意 /Remarks

授業計画は、あくまでも目安になるものである。この科目では、開講期間全体を通じ、時間管理を含めて、「学び」の全てとその成果を受講生 の自主性に委ねている。

調査研究は、授業時間内及び時間外に行う。フィールドワークを伴うことから、配付する資料に示される注意事項を守り、各自徹底した安全管理を行うこと。連絡は、基本的にオンライン学習システムを通して行う。

担当者からのメッセージ /Message from the Instructor

この授業科目は、テーマに関連した北九州の環境や生産の現場を直接訪問し、自分の目で見て、考えるとともに、分野を超えて友人や協力者の ネットワークをつくる機会となる。積極的にかかわり、有意義な科目履修になることを期待する。

キーワード /Keywords

自然環境、地域環境、社会環境

英語演習I

(English Skills I)

担当者名 筒井 英一郎 / Eiichiro TSUTSUI / 基盤教育センターひびきの分室, クレシーニ アン / Anne CRESCINI / 基盤

/Instructor 教育センターひびきの分室

プライア ロジャー / Roger PRIOR / 基盤教育センターひびきの分室, 工藤 優子 / Yuko KUDO / 非常勤講師 酒井 秀子 / Hideko SAKAI / 非常勤講師, 植田 正暢 / UEDA Masanobu / 基盤教育センターひびきの分室

履修年次 1年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018 2019 2011 /Year of School Entrance \circ 0 \circ \circ 0

対象学科 【必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標			
知識・理解	総合的知識・理解					
	情報リテラシー					
技能	数量的スキル					
	英語力	•	英語によるコミュニケーションに必	必要とされる基本的な英文法、語彙を習得	する。	
思考・判断・表現	課題発見・分析・解決力					
関心・意欲・態度	自己管理力					
	社会的責任・倫理観					
	生涯学習力					
	コミュニケーション力	•	平易な英語を用いて必要な情報を収	双集することができる。		
				-T**	FNOTODE	

英語演習 I ENG100F

授業の概要 /Course Description

この科目では、コミュニケーションの道具として英語を用いるのに最低限必要とされる受信力(読む・聞く)を向上させることを目指す。そのためにTOEIC® Listening and Reading Test(以下、TOEICテスト)の問題形式を素材として様々なトピックを扱い、高等学校までに学習した基本的な英文法および語彙を復習する。また、この授業を通して、卒業後の英語学習に活用できる学習方法やスキルを習得及び実践する。この授業では以下の4つを到達目標とする。

- ① 基本的な英語の文法の定着
- ② 基本的な英語の語彙の定着
- ③ TOEICテストにおいて400点以上の英語力の習得
- ④ 自律的な学習習慣の確立

教科書 /Textbooks

- ① 『First Time Trainer For the TOEIC® Test』(By Chizuko Tsumatori and Masumi Tahira) CENGAGE Learning. ¥2,000 (税抜本体価格)
- ② 『Newton e-learning』 ¥3,200 (なお、「英語コミュニケーションI」の再履修学生については別途指示する)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業開始後、各担当者より指示する。

授業計画・内容 /Class schedules and Contents

第1回 <合同授業>オリエンテーション

第2回 Pre-test 題材・場面:TOEICテスト形式(1) 演習事項:パート毎の概要と方略実践

第3回 Unit1 題材・場面:買い物 主な演習事項:動詞 第4回 Unit2 題材・場面:日常生活 主な演習事項:名詞 第5回 Unit3 題材・場面:交通 主な演習事項:代名詞 第6回 Unit4 題材・場面:職業 主な演習事項:形容詞と副詞 第7回 Unit5 題材・場面:食事 主な演習事項:時制

第8回 Unit6 題材・場面:日常生活 主な演習事項:受動態・分詞 第9回 Unit7 題材・場面:楽しみ 主な演習事項:動名詞と不定詞 第10回 Unit8 題材・場面:オフィスワーク 主な演習事項:助動詞

第11回 Unit9 題材・場面:会議 主な演習事項:比較 第12回 Unit10 題材・場面:旅行 主な演習事項:前置詞 第13回 Unit11 題材・場面:金融 主な演習事項:接続詞 第14回 Unit12 題材・場面:ビジネス 主な演習事項:関係詞

第15回 Post-test 題材・場面:TOEICテスト形式(2) 主な演習事項:時間管理・解法テクニックの実践

英語演習I

(English Skills I)

成績評価の方法 /Assessment Method

- ① TOEICテストのスコア50%
- ② 小テスト・課題30%
- ③ 課題(eラーニング)20%

事前・事後学習の内容 /Preparation and Review

前もって、次の授業内容に出てくる未知語の意味と発音の仕方を調べ、授業後はその時間の復習に取り組むこと。

履修上の注意 /Remarks

- ①単位認定を行う予定であっても、第 1 回目の合同授業は原則出席すること。但し、教科書等の購入は必要ない。
- ②第1回の授業では、各自、個人携帯用端末(スマートフォンやPC)を使用してe-learning演習を行う予定である。その為、北九州市立大学ポータルシステムの「ユーザIDとパスワード」を持参すること。
- ③ 成績評価の対象となる「TOEICテストのスコア」とは、本学に入学後に受験した公開試験、カレッジTOEICもしくはTOEIC IPのテスト得点である。第1学期中に必ずいずれかの試験を受けること。詳細は第1回の授業にて説明する。

担当者からのメッセージ /Message from the Instructor

ビジネスの世界で使われる英語に特化した試験がTOEICであり、国際舞台で活躍するエンジニアのコミュニケーション能力を診断する一つの指標にもなりうる。大学に入学するための受験英語とは目的や内容の異なる試験であり、繰り返し予習、練習、復習を行う必要がある。繰り返し演習を行うことによって確実な学習効果が期待できる。明確な目的意識と目標を持ち、挑戦することを楽しみながら、自身のスキル向上に努めて欲しい。

キーワード /Keywords

TOEIC, e-learning

プレゼンテーションI

(Presentation I)

植田 正暢 / UEDA Masanobu / 基盤教育センターひびきの分室. 筒井 英一郎 / Eiichiro TSUTSUI / 基盤教育 担当者名

/Instructor センターひびきの分室

工藤 優子 / Yuko KUDO / 非常勤講師, 中野 秀子 / Hideko NAKANO / 非常勤講師

坂口 由美 / Yumi SAKAGUCHI / 非常勤講師

履修年次 1年次 単位 世世 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 /Year of School Entrance \circ \circ \circ \circ \circ

対象学科 【必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	-方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力	•	資料を正しく分析的に読み、分かりやすくまとめることができる。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力	•	理解した事柄を日本語で論理的にかつ効果的に伝えることができる。

ENG103F ブレゼンテーションI

授業の概要 /Course Description

本クラスの受講生は聞く課題を通して英語を聞く力をつけるとともに,そこで学んだ表現を用いて英語で説明する力ややりとりできる力をつけ ることを目標とする。本クラスを受講した結果,以下のことができるようになることが期待される。

- ・全体のトピックを把握したり,必要な情報を聞き取ったりするなど目的にあった聞き方ができる。
- ・間違えることを恐れずに英語でやりとりや発表ができる。
- ・日常生活や旅行の場面で用いる表現を理解し,正確に使うことができる。
- ・ビジネスの場面で用いる表現を理解し,正確に使うことができる。

教科書 /Textbooks

- ・総合英語Listeningコース(リアリーイングリッシュ) 2,800円(税別)
- ・マーフィーのケンブリッジ英文法日本語版初級第3版(Murphy, Raymond 著)ケンブリッジ大学出版局,2,680円(税別)(注:この教科書は 「実践英語」と共通です。「実践英語」ですでに購入している人は重複して購入しないように気をつけてください。)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

適宜紹介する

授業計画・内容 /Class schedules and Contents

- 1. (合同授業)オリエンテーション:授業の説明とコース登録
- 2. 自己紹介
- 3. 他者紹介
- 4. ある人の1日
- 5. 週末の予定
- 6. 紙芝居プレゼンテーションの準備
- 7. 紙芝居プレゼンテーション本番
- 8. 道案内
- 9. 物の描写
- 10. 意見
- 11. プレゼンテーションの基本的な構成
- 12. 準備
- 13. リハーサル
- 14. プレゼンテーション本番
- 15. ふりかえり

プレゼンテーション

(Presentation I)

成績評価の方法 /Assessment Method

スピーキング・発表課題:40% リスニング課題(eラーニング):30%

小テスト・宿題:30%

事前・事後学習の内容 /Preparation and Review

毎回,話す課題の準備を入念に行い,事前に十分な練習をしてから本番に臨むこと。さらに,宿題としてリスニング課題があるので期日に遅れ ることなく取り組むこと。

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

「グローバル化」という言葉をニュースなどさまざまな場面で耳にしていると思います。「グローバル化」に対応できる人材に求められる資質を簡単に言い表すことはできませんが,たとえば,<積極的に他者と関わりを持てる人>や<異質なものを受け入れることができる寛容性を持つ人>などいろいろな言葉で表現されます。そのなかで<英語を話す能力>はそれほど表立って出てくるわけではありません。これは英語が重要視されていないということではなく,英語ができて当たり前の社会になってきていることによります。

「英語が苦手」と言っていられない時代になりました。間違えてもよいのでまずは英語で積極的にコミュニケーションを図ってみましょう。そ して,少しずつ正確に表現できるように経験を積みましょう。

Intensive English Course

(Intensive English Course)

担当者名 クレシーニ アン / Anne CRESCINI / 基盤教育センターひびきの分室

/Instructor

履修年次 1年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2012 2013 2014 2016 2018 2008 2009 2010 2011 2015 2017 2019 \cap O О O O

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

受講希望者が6名以下の場合は開講しない。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus (

学位授4	5方針における能力			到達目標	
知識・理解	総合的知識・理解				
	情報リテラシー				
技能	数量的スキル				
	英語力	•	英語の聞く力、話す力を向上さ	「せる。	
思考・判断・表現	課題発見・分析・解決力				
	自己管理力				
BB \ ## 05 46 65	社会的責任・倫理観				
関心・意欲・態度	生涯学習力				
	コミュニケーション力	•	様々なテーマについて自分の意	見を英語で述べることができる。	
				Intensive English Course	ENGROOF

Intensive English Course EN

ENG200F

授業の概要 /Course Description

The goal of this class is for students to sharpen all four English skills (reading, writing, speaking, and listening), with a focus on improving communication skills. Students will engage in group discussions and debates, as well as prepare group and individual presentations on a variety of topics during this course. Students will not only think about various issues and topics facing the globalized world today, but also be required to express their opinions on these topics in a strong and clear manner. At the end of this course, students should be more confident in their communication skills, and their ability to express their views in English on various issues.

教科書 /Textbooks

Course materials will be prepared by the instructor.

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

None

授業計画・内容 /Class schedules and Contents

Class 1: Course Introduction

Class 2: Education Styles (Introduction)

Class 3: Education Styles (Discussion)

Class 4: Education Styles (Presentation)

Class 5: Family Structures (Introduction)

Class 6: Family Structures (Discussion)

Class 7: Family Structures (Presentation)

Class 8: Review

Class 9: Being a Global Citizen (Introduction)

Class 10: Being a Global Citizen (Discussion)

Class 11: Being a Global Citizen (Presentation)

Class 12: Race and Gender Issues (Introduction)

Class 13: Race and Gender Issues (Discussion)

Class 14: Race and Gender Issues (Presentation)

Class 15: Final Review

成績評価の方法 /Assessment Method

Assignments (40%)

Presentations (30%)

Final Assessment (30%)

事前・事後学習の内容 /Preparation and Review

Students are required to review previous course material, and complete the necessary preparations for each class.

Intensive English Course

(Intensive English Course)

履修上の注意 /Remarks

You are required to review each day's lessons in preparation for the following class.

This class will be conducted entirely in English. Your instructor will not use Japanese, and you are expected to speak only in English as well. This class will be limited to 25 students. If the number of students exceeds 25, students will be chosen according to their English proficiency.

*This class will only be offered if there are more than six students enrolled.

担当者からのメッセージ /Message from the Instructor

This class is an elective intensive English communication course. In today's world, it is important to not only learn about the world around you, but how to express your opinion on a variety of topics important to people all over the world. This class will help you to learn how to better express yourself in English, and make you a more confident global citizen.

TOEIC基礎

(Introductory TOEIC)

担当者名 三宅 啓子 / Keiko MIYAKE / 非常勤講師

/Instructor

履修年次 1年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2016 2018 2009 2010 2011 2012 2013 2015 2017 2019 \circ O О O O Ο

対象学科

【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力」(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授	与方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力	•	TOEICの出題形式をもとに、基本的なリスニング力、リーディング力を身につける。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度 	生涯学習力		
	コミュニケーション力	•	平易な英語を用いて、ビジネスの場面において必要な情報を収集することができる。

TOEIC基礎 ENG120F

授業の概要 /Course Description

本授業は TOEICにおいてより高い点数を取ること目指す。TOEICの出題形式や問題の特徴を踏まえ、より高度なリスニングカとリーディングカを養成する。とくに、TOEICに頻出のビジネス関連文書、アナウンス、ニュース、スピーチなどを、限られた時間内に正しく理解できるような英語力を養う。

具体的には以下の6項目に目標を定める。

- 1. 語彙を増やす
- 2. リスニング力を強化する
- 3. 文法、語法の知識を身につける
- 5. 読解力を養成する
- 4. 速読の能力を高める
- 5. 出題傾向を把握し、解答のコツを身につける

教科書 /Textbooks

『Score Booster for the TOEIC L&R Test Intermediate』(金星堂, 2019) ¥2,052

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業開始後、必要に応じて指示する。

授業計画・内容 /Class schedules and Contents

第1回 Introduction 授業の進め方、自宅学習の方法について説明する。

第2回 Unit 1 Travel / 名詞

第3回 Unit 2 Dining Out / 形容詞

第4回 Unit 3 Media / 副詞

第5回 Unit 4 Entertainment / 時制

第6回 Unit 5 Purchasing / 主語と動詞の一致

第7回 Unit 6 Clients / 能動態・授動態

第8回 Unit 7 Recruiting / 動名詞・不定詞

第9回 Unit 8 Personnel / 現在分詞・過去分詞

第10回 Unit 9 Advertising / 代名詞

第11回 Unit 10 Meetings / 比較

第12回 Unit 11 Finance / 前置詞

第13回 Unit 12 Offices / 接続詞

第14回 Unit 13 Daily Life / 前置詞と接続詞の違い

第15回 Unit 14 Sales & Marketing / 関係代名詞

TOEIC基礎

(Introductory TOEIC)

成績評価の方法 /Assessment Method

①期末テスト 50%②小テスト 30%③提出物 20%

事前・事後学習の内容 /Preparation and Review

予習を前提に授業を進めるので、必ず自宅学習を行うこと。 授業終了後は、学習したページについて復習を行い、単語リスト、同意語リストを作成する。

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

TOEIC応用

(Advanced TOEIC)

担当者名 三宅 啓子 / Keiko MIYAKE / 非常勤講師

/Instructor

履修年次 1年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

2013 2014 2015 2016 2018 対象入学年度 2008 2009 2010 2011 2012 2017 2019 /Year of School Entrance \circ \circ О O O

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

授業で得られる「学位授与方針における能力」(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	5方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力	•	TOEICの出題形式をもとに、高度なリスニング力、リーディング力を身につける。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力	•	ビジネスの様々な場面において、英語を用いて必要な情報を収集することができる。

TOEIC応用 ENG220F

授業の概要 /Course Description

本授業は TOEICにおいてより高い点数を取ること目指す。TOEICの出題形式や問題の特徴を踏まえ、より高度なリスニング力とリーディング力を養成する。とくに、TOEICに頻出のビジネス関連文書、アナウンス、ニュース、スピーチなどを、限られた時間内に正しく理解できるような英語力を養う。授業修了時までにTOEIC 600点程度の総合的な英語力の習得を目指す。

具体的には以下の6項目に目標を定める。

- 1. 語彙を増やす
- 2. リスニング力を強化する
- 3. 文法、語法の知識を身につける
- 5. 読解力を養成する
- 4. 速読の能力を高める
- 5. 出題傾向を把握し、解答のコツを身につける

教科書 /Textbooks

『Step-up Skills for the TOEIC Listening and Reading Test』(北尾泰幸他著) (Asahi Press, 2017) ¥1,700

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業開始後、必要に応じて指示する。

授業計画・内容 /Class schedules and Contents

第1回 授業の進め方、自宅学習の方法について説明する

 第2回
 Unit 1: Eating Out
 動詞 (1)

 第3回
 Unit 2: Travel
 動詞 (2)

 第4回
 Unit 3: Amusement
 品詞

 第5回
 Unit 4: Meetings
 分詞

第6回 Unit 5: Personnel 不定詞と動名詞 (1) 第7回 Unit 6: Shopping 不定詞と動名詞 (2)

第8回 Unit 7: Advertisement 仮定法 第9回 Unit 8: Daily Life 受動態 第10回 Unit 9: Office Work 代名詞 第11回 Unit 10: Business 数量詞 第12回 Unit 11: Traffic 接続詞 第13回 Unit 12: Finance and Banking 前置詞

第14回 Unit 13: Media 語彙 第15回 Unit 14: Health and Welfare まとめ

TOEIC応用

(Advanced TOEIC)

成績評価の方法 /Assessment Method

①期末テスト 50% ②小テスト 30% ③提出物 20%

事前・事後学習の内容 /Preparation and Review

予習を前提に授業をすすめるので、必ず自宅学習を行うこと。 授業終了後は、学習したページについて復習を行い、単語リスト、同意語リストを作成する。

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

英語演習||

(English Skills II)

担当者名 木山 直毅 / Naoki KIYAMA / 基盤教育センターひびきの分室, 植田 正暢 / UEDA Masanobu / 基盤教育センタ

筒井 英一郎 / Eiichiro TSUTSUI / 基盤教育センターひびきの分室, 工藤 優子 / Yuko KUDO / 非常勤講師

江口 雅子 / Masako EGUCHI / 非常勤講師, クレシーニ リズ / Riz CRESCINI / 非常勤講師

履修年次 1年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 /Year of School Entrance \circ \circ \circ \circ \circ

対象学科 【必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	-方針における能力			到達目標
知識・理解	総合的知識・理解			
	情報リテラシー			
技能	数量的スキル			
	英語力	•	英語によるコミュニケーション	ノに必要とされる文法、語彙を習得する。
思考・判断・表現	課題発見・分析・解決力			
	自己管理力			
	社会的責任・倫理観			
関心・意欲・態度	生涯学習力			
	コミュニケーション力	•	比較的平易な英語を用いて、必	必要な情報を収集することができる。

英語演習 I ENG110F

授業の概要 /Course Description

この科目では、コミュニケーションの道具として英語を用いるのに必要とされる受信力(読む・聞く)を向上させ、限られた範囲内であれば業務上のコミュニケーションも可能なレベルを目指す。そのためにTOEIC® Listening and Reading Test(以下、TOEICテスト)の問題形式を素材として扱い、卒業後にそれぞれの専門分野においてコミュニケーションの道具として英語を使うために最低限必要とされる英語の基本的な受信力(読む・聞く)を伸ばす。また、この授業を通して、卒業後の英語学習に活用できる学習方法やスキルを習得および実践し、自律的に学習する態度を養う。この授業では特に以下の4つを到達目標とする。

- ① 基本的な英語の文法の定着
- ② 基本的な英語の語彙の定着
- ③ TOEICテストにおいて470点以上の英語力の習得
- ④ 自律的な学習習慣の確立

教科書 /Textbooks

- ① 『Level-up Trainer for the TOEIC® Test』(By Ayako Yokogawa and Tony Cook) CENGAGE Learning. ¥2,000 (税抜本体価格)
- ② 『Newton e-learning』 (前期より継続利用) (なお、「英語コミュニケーションII」の再履修学生については別途指示する)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業開始後、各担当者より指示する。

授業計画·内容 /Class schedules and Contents

第1回 オリエンテーション Pre-test テスト形式を知る

第2回 Unit1 テスト形式に慣れる

第3回 Unit2 基本戦略①:リスニングを中心に

第4回 Unit3 基本戦略②:リーディングを中心に

第5回 Unit4 英文の基本構造

第6回 Unit5 回答根拠の登場順

第7回 Unit6 正解の言い換えパターン

第8回 Units1-6 まとめ

第9回 Unit7 機能疑問文の聞き取り

第10回 Unit8 動詞の時制の見極め

第11回 Unit9 接続詞 vs. 前置詞

第12回 Unit10 複数パッセージの攻略

第13回 Unit11 接続詞

第14回 Unit12 NOT型設問

第15回 Units 7-12 まとめ

英語演習||

(English Skills II)

成績評価の方法 /Assessment Method

- ① TOEICテストのスコア50%
- ② 小テスト・課題30%
- ③ 課題 (eラーニング)20%

事前・事後学習の内容 /Preparation and Review

前もって、次回の授業内容に出てくる未知語の意味や発音の仕方を調べ、授業後はその時間の復習に取り組むこと。

履修上の注意 /Remarks

成績評価の対象となる「TOEICテストスコア」は、本学入学後に受験した公開試験、カレッジTOEICもしくはTOEIC IPのテスト得点のことであり、学期中に必ずいずれかの試験を受けること。詳細は第1回の授業にて説明する。

担当者からのメッセージ /Message from the Instructor

ビジネスの世界で使われる英語に特化した試験がTOEICであり、国際舞台で活躍するエンジニアのコミュニケーション能力を診断する一つの指標にもなりうる。大学に入学するための受験英語とは目的や内容の異なる試験であり、繰り返し予習、練習、復習を行う必要がある。繰り返し演習を行うことによって確実な学習効果が期待できる。明確な目的意識と目標を持ち、挑戦することを楽しみながら、自身のスキル向上に努めて欲しい。

キーワード /Keywords

TOEIC, e-learning

プレゼンテーションII

(Presentation II)

担当者名 プライア ロジャー / Roger PRIOR / 基盤教育センターひびきの分室, クレシーニ アン / Anne CRESCINI /

/Instructor 基盤教育センターひびきの分室

木山 直毅 / Naoki KIYAMA / 基盤教育センターひびきの分室, 坂口 由美 / Yumi SAKAGUCHI / 非常勤講師

植田 正暢 / UEDA Masanobu / 基盤教育センターひびきの分室

履修年次1年次単位1単位学期2学期授業形態演習クラス/Year/Credits/Semester/Class Format/Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 /Year of School Entrance \circ \circ \circ \circ \circ

対象学科 【必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力	•	英語のブレゼンテーションで使用される基礎的な表現法と構成を習得する。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーションカ	•	様々な情報やデータを英語で分かりやすく伝える技能を身につける。

ブレゼンテーションI ENG113F

授業の概要 /Course Description

このコースでは、学生が様々なテーマについて英語の資料を読み、資料に基づいた簡単な英語で発表をする。英語のプレゼンテーションで求められる論理的な構成や明確な表現力を重視しながら、長めの英文の読解力も育成する。さらに、英語の発表に必要な表現や手振り身振りを学ぶとともに、パワーポイントやポスターなど、英語の補助資料の特徴を踏まえて英語コミュニケーション能力を包括的に養う。この授業の到達目標は以下の通りとする。

- (1)英語の文章を正しく読み、主張とその根拠を見分ける
- (2)内容を批判的に検討し、英語で発表できるように簡単にまとめる
- (3)聞き手の理解を容易にするために英語の補助資料などを作成・活用する
- (4)英語で発表するのに相応しい技能と態度を身につける

教科書 /Textbooks

First Steps in English Presentations 2018, by Roger Prior

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業において各担当教員が指示する。

授業計画・内容 /Class schedules and Contents

- 第1回 Guidance; Preparing for a Presentation in English
- 第2回 Practising Delivery and Gestures
- 第3回 Presentation 1: Introducing Your Partner
- 第4回 The Introduction to a Presentation
- 第5回 Introduction Practice
- 第6回 Concluding a Presentation
- 第7回 Conclusion Practice
- 第8回 Using and Explaining Data
- 第9回 Collecting Data: A Questionnaire
- 第 1 0 回 Preparing for an Informative Presentation
- 第 1 1回 Presentation 2: An Informative Presentation
- 第 1 2 回 Time Transition Signals and Instructional Process Presentations
- 第13回 Explanatory Process Presentations
- 第 1 4 回 Preparing for the Final Presentation
- 第15回 Final Presentation

プレゼンテーションII

(Presentation II)

成績評価の方法 /Assessment Method

Class Presentations 30%
Homework and In-class Tasks 30%
Final Presentation 40%

事前・事後学習の内容 /Preparation and Review

毎週の授業で指定された予習および復習をきちんと行うこと。

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

You will not just be learning English in this class. You will be learning how to use English. There's a big difference. This class provides a chance for you to express yourself using the English you learnt at school.

キーワード /Keywords

Presentation

TOEIC I

(TOEIC I)

担当者名 岡本 清美 / Kiyomi OKAMOTO / 基盤教育センターひびきの分室、クレシーニ アン / Anne CRESCINI / 基盤

/Instructor 教育センターひびきの分室

三宅 啓子 / Keiko MIYAKE / 非常勤講師、工藤 優子 / Yuko KUDO / 非常勤講師

酒井 秀子 / Hideko SAKAI / 非常勤講師

履修年次 2年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 /Year of School Entrance \circ O О O O

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department 科

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	- 方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力	•	基本的な語彙、文法を身につけ、英語の読む力、聞く力を向上させる。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力		
	コミュニケーション力	•	英語を用いて最低限のコミュニケーションを取ることができる。

TOEIC I ENG221F

授業の概要 /Course Description

社会においてますますTOEIC のスコアが重要視されてきている。本科目では、TOEIC LR において470点以上のスコアを獲得するために、TOEIC LR の概要を把握し、どのような英語力が試されているか、そしてその英語力を身につけるにはどのようにアプローチすれば良いのかという観点から、各パートの出題形式およびその解答の方策を体系的に学ぶ。TOEIC LR に頻出される文法事項、語彙について復習すると共に、470点を突破できる英語力を身につける。

教科書 /Textbooks

『Score Booster for the TOEIC® L&R Test Beginner』、金星堂、1900円

『Newton e-learning』、2650円

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業で指示する

授業計画・内容 /Class schedules and Contents

Week 1 オリエンテーション(合同授業)

Week 2 Unit 1Travel品詞①:名詞(単数形・複数形)

Week 3 Unit 2Dining Out品詞②:形容詞(名詞修飾、補語)

Week 4 Unit 3Shopping品詞③:副詞(動詞修飾)

Week 5 Unit 4Entertainment時制(現在・過去・未来)

Week 6 Unit 5Advertising3単現のs

Week 7 Unit 6Events能動態・受動態

Week 8 Unit 7Daily Life動詞の後ろの動名詞・不定詞(定型表現)

Week 9 Unit 8Media代名詞(主格・所有格・目的格)

Week 10 Unit 9Recruiting比較(比較級、最上級)

Week 11 Unit 10Production & Sales前置詞(理由・譲歩、定型表現)

Week 12 Unit 11Meetings接続詞(理由・譲歩)

Week 13 Unit 12Offices前置詞・接続詞対比

Week 14 Unit 13Personnel関係代名詞(主格・所有格)

Week 15 まとめ

なお、学期中にテストを2回実施する(日程未定)。

TOEIC I

(TOEIC I)

成績評価の方法 /Assessment Method

- ① TOEIC LR のスコア30%
- ② テスト2回 20%
- ③ 小テスト・課題 30%
- ④ eラーニング 20%

事前・事後学習の内容 /Preparation and Review

【授業前の課題】 指定範囲の予習を行うこと 【授業後の課題】 授業で行った演習問題の復習をすること 【学期を通して】 e-Learningでの学習を計画的かつ自律的にすすめること

履修上の注意 /Remarks

教科書は授業第1週から使用する。必ず用意しておくこと。

担当者からのメッセージ /Message from the Instructor

科学技術英語I

(English for Science and Technology I)

担当者名 木山 直毅 / Naoki KIYAMA / 基盤教育センターひびきの分室, プライア ロジャー / Roger PRIOR / 基盤教育

/Instructor センターひびきの分室

履修年次 2年次 単位 1単位 学期 1学期/2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance O O O O O O

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department 科

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	- 方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力	•	バラグラフの構成を意識しながら英語の文章を読み、内容を理解することができる。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力	•	文章の論理的構造に注意を払いながらコミュニケーションを取ることができる。

科学技術英語 I ENG241F

授業の概要 /Course Description

比較的やさしく書かれた英語の文章を通して科学技術分野の文献を読んだり,情報を発信したりするための基礎力を養うことを目的とする。ここでいう「基礎力」とは単に英語の語彙や文法の知識があるだけではなく,批判的・能動的に読んだり,論理的に考え,表現したりできる力を指す。このような基礎力を養うために特に以下の7つを到達目標とする。

- (1) 批判的・能動的に考え,自分の考えを伝えることができる
- (2) 事実と意見を区別し,正しく使い分けることができる
- (3) 意見に対して妥当な理由や証拠を挙げることができる
- (4) 著者の立場を理解したり,見方を変えて考えたりできる
- (5) 原因と結果の関係を正しく理解することができる
- (6) 文脈から書かれていないことを推論し,表現することができる
- (7) 図式化するなどして考えをまとめることができる

教科書 /Textbooks

プリント

ReallyEnglish Practical English 6(理系コース)リアリーイングリッシュ

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中に適宜紹介する

授業計画・内容 /Class schedules and Contents

- 1回 <合同授業>コースの紹介とeラーニングの説明
- 2回 トップダウン的に読むとは
- 3回 意見と事実を区別するとは
- 4回 Reading: 自転車について
- 5回 しっかりとした意見を支えるものとは
- 6回 Reading: あなたに適した職業とは
- 7回 筆者の視点を理解しよう
- 8回 Reading: ガリレオの見たもの
- 9回 原因と結果とは
- 10回 Reading: 蒸気エンジンの発明
- 11回 推論とは
- 12回 Reading: 時間の計測
- 13回 出来事の流れを理解しよう
- 14回 Reading: 泳ぐときのルール
- 15回 まとめ

科学技術英語I

(English for Science and Technology I)

成績評価の方法 /Assessment Method

期末試験:40% 課題・小テスト:40% eラーニング:20%

なお,本科目の成績評価はTOEIC® L&Rスコアによって調整される

事前・事後学習の内容 /Preparation and Review

毎回の授業であつかう内容の発展的な課題を課すので必ず取り組むこと。またスケジュールに従って計画的にeラーニングの課題を学習すること。

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

キーワード /Keywords

英語,ロジック,科学技術

TOEIC II

(TOEIC II)

担当者名 岡本 清美 / Kiyomi OKAMOTO / 基盤教育センターひびきの分室, 工藤 優子 / Yuko KUDO / 非常勤講師

/Instructor 酒井 秀子 / Hideko SAKAI / 非常勤講師, 三宅 啓子 / Keiko MIYAKE / 非常勤講師

履修年次2年次単位1単位学期2学期授業形態演習クラス/Year/Credits/Semester/Class Format/Class

2013 2014 2018 対象入学年度 2008 2009 2010 2011 2012 2015 2016 2017 2019 /Year of School Entrance \circ \circ \circ O O \circ

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department **

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	5方針における能力			到達目標	
知識・理解	総合的知識・理解				
	情報リテラシー				
技能	数量的スキル				
	英語力	•	基本的な語彙、文法を身につけ	ける。	
思考・判断・表現	課題発見・分析・解決力				
	自己管理力				
	社会的責任・倫理観				
関心・意欲・態度	生涯学習力				
	コミュニケーション力	•	英語を用いて最低限のコミュニ	ケーションを取ることができる。	
				70570 7	5440005

TOEIC II ENG222F

授業の概要 /Course Description

社会においてますますTOEIC のスコアが重要視されてきている。本科目では、TOEIC LR において470点以上のスコアを獲得するために、TOEIC LR に頻出される文法事項、語彙について基本事項から復習する。またTOEIC LR の概要を把握し、各自の苦手な箇所を把握し、苦手なパートや問題タイプを克服するためにどのようにアプローチすれば良いのかという観点から各パートについて体系的に学ぶ。

教科書 /Textbooks

『Mastery Drills for the TOEIC(R) Test』、桐原書店、1700円

『Newton e-learning』、1100円(1学期からの継続利用料。2学期だけの場合は2650円)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

『Extreme Strategies for the TOEIC® Listening and Reading Test』、松柏社 (TOEIC I で使用した教科書)

授業計画・内容 /Class schedules and Contents

Week 1: Unit 01 人物の動作と状態(Part 1) / 表・用紙(Part 7)

Week 2: Unit 02 疑問詞を使った疑問文(Part 2)/広告(Part 7)

Week 3: Unit 03 日常場面での会話(Part 3)/品詞(Part 5)

Week 4: Unit 04 アナウンス・ツアー(Part 4)/動詞(Part 5)

Week 5: Unit 05 物の状態と位置 (Part 1) / チャット (Part 7)

Week 6: Unit 06 基本構文(依頼/提案・勧誘/申し出)と応答の決まり文句(Part 2)/手紙・Eメール(Part 7)

Week 7: Unit 07 電話での会話(Part 3)/代名詞・関係代名詞(Part 5)

Week 8: Unit 08 ラジオ放送・宣伝(Part 4) / 接続詞・前置詞(Part 5) Week 9: Unit 09 Yes/No疑問文(Part 2) / ダブルパッセージ(2つの文書)(Part 7)

Week 10: Unit 10 オフィスでの会話 ①(Part 3) / Part 5の復習(Part 5)

Week 11: Unit 11 留守番電話(Part 4) / トリプルパッセージ(3つの文書)(Part 7)

Week 12: Unit 12 オフィスでの会話 ②(Part 3) / Part 7の復習(Part 7)

Week 13: Unit 13 Part 1とPart 2の復習(Part 1, Part 2)/時制・代名詞・語い問題(Part 6)

Week 14: Unit 14 トーク・スピーチ・会議の一部(Part 4)/つなぎ言葉・文の挿入(Part 6)

Week 15: Unit 15 Part 3とPart 4の復習(Part 3, Part 4) / Part 6の復習(Part 6)

なお、学期中にテストを2回実施する(日程未定)。

成績評価の方法 /Assessment Method

- ① TOEIC LR のスコア 30%
- ② テスト2回 20%
- ③ 小テスト・課題 30%
- ④ eラーニング 20%

TOEIC II

(TOEIC II)

事前・事後学習の内容 /Preparation and Review

【授業前の課題】 指定範囲の宿題を行うこと

【授業後の課題】 授業で行った演習問題の復習をすること

【学期を通して】 e-Learningでの学習を計画的かつ自律的にすすめること

履修上の注意 /Remarks

教科書は授業第1週から使用する。必ず用意しておくこと。

担当者からのメッセージ /Message from the Instructor

科学技術英語II

(English for Science and Technology II)

担当者名 プライア ロジャー / Roger PRIOR / 基盤教育センターひびきの分室, 柏木 哲也 / Tetsuya KASHIWAGI / 基

/Instructor 盤教育センターひびきの分室

植田 正暢 / UEDA Masanobu / 基盤教育センターひびきの分室

履修年次 2年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Year of School Entrance 0 0 0 0 0 0

対象学科 【選択必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学

/Department 科

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	-方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力	•	バラグラフの構成を意識しながら英語で文章を書くことができる。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力		
	コミュニケーション力	•	文章の論理的構造に注意を払いながらコミュニケーションを取ることができる。

科学技術英語Ⅱ ENG242F

授業の概要 /Course Description

この科目では、第1学期に「科学技術英語I」で学んだことをもとに、英語で学術的な内容を論理的かつ明瞭に表現できるようになる。考えを練ることから文章を書き上げるまでの過程を通して、パラグラフの構造や学術ライティングで必要となる文法事項や語彙を学び、様々な種類のパラグラフが作成できるようになることを目指す。したがって、この科目では以下の5つを達成目標とする。

- ① 考えを練ることから文章を書き上げるまでの過程を理解し、実践できる
- ② トピック・センテンスやサポートといったパラグラフの基本構造に則って文章を書くことができる
- ③ パラグラフの種類によって必要になる情報を組み込んだパラグラフを作成できる
- ④ 文と文の論理的なつながりを理解し、論理的なつながりを意識して文章を作成できる
- ⑤ 学術的な文章を作成する際に用いられる文法や表現を用いることができる

教科書 /Textbooks

教員から資料が配布される

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業開始後、各担当者より指示する。

授業計画・内容 /Class schedules and Contents

- 1回 Course introduction; What is a paragraph?
- 2回 Finding the subject; Topic sentences
- 3回 Finding the object; Writing topic sentences
- 4回 Division and classification
- 5回 Coordinating conjunctions; Supporting sentences
- 6回 Subordinate clauses of time; Chronological narratives
- 7回 Other subordinate clauses; Write a narrative
- 8回 First Half Review
- 9回 Order of adjectives; Comparison and Contrast
- 10回 Comparatives and superlatives; Two types of comparative paragraph
- 11回 Concluding sentences; Writing a comparative paragraph
- 12回 Describing cause and effect
- 13回 Problem solving
- 14回 Describing a problem and its solutions
- 15回 Final Review

科学技術英語II

(English for Science and Technology II)

成績評価の方法 /Assessment Method

課題:50% 期末試験:50%

なお、本科目の成績評価はTOEIC(R)L&Rスコアによって調整される。

事前・事後学習の内容 /Preparation and Review

毎週授業で指定された予習をしっかりするとともに、授業内容に基づいた課題や復習をこなすこと。

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

Clear academic writing requires a clear mind; this course will not only look at grammar and sentence structure, but also the logical structure of paragraphs.

(Basic R/W I)

担当者名 柏木 哲也 / Tetsuya KASHIWAGI / 基盤教育センターひびきの分室, 冨永 美喜 / Miki TOMINAGA / 非常勤講

/Instructor 師

履修年次 2年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance O O Ο O O O

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department ***

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力	•	目的にあった読み方で身近な話題について理解することができる。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
BB \ # Ch ## Ch	社会的責任・倫理観		
関心・意欲・態度	生涯学習力		
	コミュニケーション力	•	簡単な英語を用いて自分の考えを適切に書き表すことができる。

Basic R/W I ENG203F

授業の概要 /Course Description

英語の基本的な文法・語彙について、リーディングを通して学習する。英語の文章を読み理解するためには英語のロジックを正しく理解していることが必要不可欠である。そのため、本科目では、身の回りの様々なトピックや時事問題に関する比較的平易な英語の文章を通して、チャンクリーディングや音読などの英語の基本的なリーディングストラテジーを身につける。またモデルとなる文章を参考にしながら、自分の考えを簡単な英語を用いて表現できる力を養う。

教科書 /Textbooks

Express Ahead (金星堂)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中指示する。

授業計画・内容 /Class schedules and Contents

- 1回 シラバスと概要説明
- 2回 Unit 1 First Impression 読解と文法
- 3回 Unit 1 First Impression 作文
- 4回 Unit 4 Keeping Fit, Eating Well 読解と文法
- 5回 Unit 4 Keeping Fit, Eating Well 作文
- 6回 ライティング課題 1
- 7回 Unit 5 Advice to Freshmen 読解と文法
- 8回 Unit 5 Advice to Freshmen 作文
- 9回 Unit 7 Festivals 読解と文法
- 10回 Unit 7 Festivals 作文
- 11回 ライティング課題2
- 12回 Unit 12 Controversy 読解と文法
- 13回 Unit 12 Controversy 作文
- 14回 Presentation
- 15回 まとめ

成績評価の方法 /Assessment Method

授業中の演習及び課題、小テスト(40%)、授業への参加度(10%)、試験の成績(50%)。

なお本科目の成績評価は TOEIC(R) L&Rスコアによって調整される。

事前・事後学習の内容 /Preparation and Review

次時の教材を十分予習し、段落構成、トピック、主張の拠り所、具体例など構造を分析すると同時に、未知語の調査、要約、予習指示問題を済 ませておくこと。また授業後には、ノートを整理しその時間の学習内容を十分把握しておくこと。

(Basic R/W I)

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

(Basic R/W I)

担当者名 富永 美喜 / Miki TOMINAGA / 非常勤講師

/Instructor

履修年次 2年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2013 2014 2015 2016 2018 2008 2009 2010 2011 2012 2017 2019 O O Ο O O O

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department ***

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力	•	目的にあった読み方で身近な話題について理解することができる。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力	•	簡単な英語を用いて自分の考えを適切に書き表すことができる。

Basic R/W I ENG203F

授業の概要 /Course Description

英語の基本的な文法・語彙について、リーディングを通して学習する。英語の文章を読み理解するためには英語のロジックを正しく理解していることが必要不可欠である。そのため、本科目では、身の回りの様々なトピックや時事問題に関する比較的平易な英語の文章を通して、チャンクリーディングや音読などの英語の基本的なリーディングストラテジーを身につける。またモデルとなる文章を参考にしながら、自分の考えを簡単な英語を用いて表現できる力を養う。

教科書 /Textbooks

Express Ahead (金星堂)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中指示する。

授業計画・内容 /Class schedules and Contents

- 1回 シラバスと概要説明
- 2回 Unit 1 First Impression 読解と文法
- 3回 Unit 1 First Impression 作文
- 4回 Unit 4 Keeping Fit, Eating Well 読解と文法
- 5回 Unit 4 Keeping Fit, Eating Well 作文
- 6回 ライティング課題 1
- 7回 Unit 5 Advice to Freshmen 読解と文法
- 8回 Unit 5 Advice to Freshmen 作文
- 9回 Unit 7 Festivals 読解と文法
- 10回 Unit 7 Festivals 作文
- 11回 ライティング課題2
- 12回 Unit 12 Controversy 読解と文法
- 13回 Unit 12 Controversy 作文
- 14回 Presentation
- 15回 まとめ

成績評価の方法 /Assessment Method

授業中の演習及び課題、小テスト(40%)、授業への参加度(10%)、試験の成績(50%)。

なお本科目の成績評価は TOEIC(R) L&Rスコアによって調整される。

事前・事後学習の内容 /Preparation and Review

次時の教材を十分予習し、段落構成、トピック、主張の拠り所、具体例など構造を分析すると同時に、未知語の調査、要約、予習指示問題を済 ませておくこと。また授業後には、ノートを整理しその時間の学習内容を十分把握しておくこと。

(Basic R/W I)

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

Discussion and Debate

(Discussion and Debate)

担当者名 プライア ロジャー / Roger PRIOR / 基盤教育センターひびきの分室, クレシーニ アン / Anne CRESCINI /

/Instructor 基盤教育センターひびきの分室

新貝 フランセス / Frances SHINKAI / 非常勤講師

履修年次 2年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department 科

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	総合的知識・理解		
技能	情報リテラシー		
	数量的スキル		
	英語力	•	英文の内容を理解し、英語を用いてその内容について議論することができる。
思考・判断・表現	課題発見・分析・解決力		
関心・意欲・態度	自己管理力		
	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力	•	情報やデータを活用し、自分の意見を論理的に述べることができる。

Discussion and Debate ENG204F

授業の概要 /Course Description

プレゼンテーションと異なり、ディスカッションとディベートでは自分の意見を一方的に述べるだけではなく、相手の意見を認めたり、反駁したりする。この科目では、様々な課題をめぐって、英語を用いて自分の意見をまとめ、説得力をもって論理的に主張することができるよう、学習する。また、英語によるディスカッションやディベートをする際に用いられる基本的な表現や語彙を学ぶとともに、効果的かつ円滑にディスカッションやディベートをすすめるために必要な様々なストラテジーを習得する。特に後半では、自分の意見を述べるほかに、相手の意見に対して有効的に異議を申し立てる方法も学ぶ。

- このコースの到達目標は以下の3つである。
- ① 英語で説得力のあるスピーチができるようになること
- ② 相手の論じていることに批判的に聴けるようになること
- ③ 相手の論じていることに英語で反論できるようになること

教科書 /Textbooks

教員による配布資料

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

O"Pros and Cons: a Debater's Handbook", Ed. by Trevor Sather (Routledge)

"Discover Debate: Basic Skills for Supporting and Refuting Opinions" by Michael Lubetsky, Charles LeBeau, and David Harrington (Language Solutions Inc.)

授業計画・内容 /Class schedules and Contents

- 第1回 Introduction: Types of opinion
- 第2回 Affirmative speech structure
- 第3回 Rebutting Reasons
- 第 4 回 Class Debate 1: Preparation
- 第5回 Class Debate 1: Seven items to survive on a desert island
- 第6回 Class Debate 1: Review and rebuttals
- 第7回 Rebutting supports
- 第8回 Putting together a rebuttal
- 第9回 Rebutting an article
- 第 1 0 回 Putting together a negative speech
- 第 1 1回 Class Debate 2: Preparing a negative speech
- 第12回 Class Debate 2: A negative speech
- 第13回 Researching for the Final Debate
- 第 1 4 回 Preparing affirmative and negative speeches
- 第15回 Final Debate

Discussion and Debate

(Discussion and Debate)

成績評価の方法 /Assessment Method

課題 20% クラスディベートとディスカッション 40% 期末ディベート 40%

なお、本科目の成績評価はTOEIC(R)L&Rスコアによって調整される。

事前・事後学習の内容 /Preparation and Review

毎週指定された予習と復習を行うこと。事前準備をしない学生は、授業についていけなくなる可能性が高い。

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

This class will require you to prepare thoroughly beforehand each week. You will be expected to research the debate topics in your own time in English and Japanese.

English Communication

(English Communication)

担当者名 クレシーニ アン / Anne CRESCINI / 基盤教育センターひびきの分室, 新貝 フランセス / Frances SHINKAI /

/Instructor 非常勤講師

履修年次 2年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance O O Ο O Ο

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department 科

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	- 方針における能力		到達目標
知識・理解	総合的知識・理解		
技能	情報リテラシー		
	数量的スキル		
	英語力	•	様々なテーマに触れながら、英語の聞く力、話す力の基礎を身につける。
思考・判断・表現	課題発見・分析・解決力		
関心・意欲・態度	自己管理力		
	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力	•	目的に合わせて平易な英語を用いてコミュニケーションを取ることができる。

English Communication ENG205F

授業の概要 /Course Description

本科目は、様々なトピックを題材として、将来、英語をコミュニケーションの道具として用いる際に必要となる、基本的な英語のリスニングカとスピーキング力を養成する。日常的な会話を題材として大量の英語のインプットを行い、英語のリスニング力を徹底的に鍛えるとともに、状況に応じてコミュニケーションの目的を把握し、自分の身の周りのことについて、簡単な英語を用いて会話ができる力を養成する。

教科書 /Textbooks

English Communication: Using English to Broaden Your Knowledge of Yourself and Others By Anne Crescini

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

None

授業計画・内容 /Class schedules and Contents

1.Course Introduction

2.Unit 1: Introducing Yourself

3.Unit 1: Introducing Your Family and Friends

- 4. Unit 2: Talking About the Past: Childhood
- 5. Unit 3: Talking About the Past: High School
- 6. Unit 4: Talking About the Present: Everyday Life
- 7. Unit 4: Talking About the Present: Hobbies
- 8. Midterm Review
- 9. Unit 5: Talking About the Future: Career Goals
- 10. Unit 5: Talking About the Future: Dreams and Goals
- 11. Unit 6: Knowing Japan: Introducing My Culture to Others--Discussion (1)
- 12. Unit 6: Knowing Japan: Introducing My Culture to Others--Presentation (2)
- 13. Unit 7: Knowing the World: Learning About Other Cultures--Travel (1)
- 14. Unit 7: Knowing the World: Learning About Other Cultures--Working Holiday (2)
- 15. Final Review

成績評価の方法 /Assessment Method

Quizzes 20%

Assignments 40%

Final Exam 40%

なお、本科目の成績評価はTOEIC® L&Rスコアによって調整される。

事前・事後学習の内容 /Preparation and Review

毎回の授業をふまえた課題を課すので、必ずやり終えてから授業に臨むこと。

English Communication

(English Communication)

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

キーワード /Keywords

Scientific R/W I

(Scientific R/W I)

担当者名 柏木 哲也 / Tetsuya KASHIWAGI / 基盤教育センターひびきの分室, 國﨑 倫 / Rin KUNIZAKI / 非常勤講師

/Instructor

履修年次 2年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2013 2014 2015 2016 2018 2019 2008 2009 2010 2011 2012 2017 0 \circ \circ \circ O \circ

対象学科 【選択必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学

/Department 科

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	i-方針における能力		到達目標
知識・理解	総合的知識・理解		
技能	情報リテラシー		
	数量的スキル		
	英語力	•	英語のバラグラフ構造を理解して英文を読み、内容をまとめることができる
思考・判断・表現	課題発見・分析・解決力		
関心・意欲・態度	自己管理力		
	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力	•	文章の基本構造を理解し、自分の考えを発信することができる。

Scientific R/W I ENG243F

授業の概要 /Course Description

科学技術を中心とした分野の平易な文章を通して、基本的な文型や表現を学習するとともに、基本的な語彙を学習し習得する。また科学技術の分野においてよく用いられるパラグラフの構成方法を学び、将来、自分の専門分野に関するアカデミックな文章を読む際に必要とされる基本的なリーディングストラテジーを身に付けるとともに、辞書やインターネット等のリソースを活用してやや難解な文章も自分の力で読めるようにする。同時に基本的な概念を表現できるライティング・プレゼンテーション方略とスキルも身につける。

教科書 /Textbooks

Writing Points ISBN4-7647-3939-0 金星堂

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業担当者が必要に応じて紹介する。

授業計画・内容 /Class schedules and Contents

- 1回 シラバスと概要説明
- 2回 Unit 1 Overcoming Disasters (読解)
- 3回 Unit 1 Overcoming Disasters (文法と表現)
- 4回 Unit 5 Marry Me, Robot (読解)
- 5回 Unit 5 Marry Me, Robot (文法と表現)
- 6回 ライティング課題1
- 7回 Unit 6 Remember Not to Forget! (読解)
- 8回 Unit 6 Remember Not to Forget! (文法と表現)
- 9回 Unit 9 Society Service (読解)
- 10回 Unit 9 Society Service (文法と表現)
- 11回 ライティング課題2
- 12 回 Unit 11 Homesick for Earth (読解)
- 13 回 Unit 11 Homesick for Earth (文法と表現)
- 14 Presentation
- 15回 総まとめ

Scientific R/W I

(Scientific R/W I)

成績評価の方法 /Assessment Method

授業参加度...10% 課題...30%

小テスト...20%

試験...40%

事前・事後学習の内容 /Preparation and Review

次時の教材を十分予習し、段落構成、トピック、主張の拠り所、具体例など構造を分析すると同時に、未知語の調査、要約、予習指示問題を済 ませておくこと。また授業後には、ノートを整理しその時間の学習内容を十分理解しておくこと。

履修上の注意 /Remarks

各課の予習としてユニットごとに内容理解を課題として課すので、単語熟語の下調べと段落ごとの概要をまとめておくこと。

担当者からのメッセージ /Message from the Instructor

(Basic R/W II)

担当者名 柏木 哲也 / Tetsuya KASHIWAGI / 基盤教育センターひびきの分室, 冨永 美喜 / Miki TOMINAGA / 非常勤講

/Instructor 師

履修年次 2年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 /Year of School Entrance O Ο Ο O Ο ()

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	総合的知識・理解		
技能	情報リテラシー		
	数量的スキル		
	英語力	•	英語のバラグラフ構造を理解して英文を読むことができる。
思考・判断・表現	課題発見・分析・解決力		
関心・意欲・態度	自己管理力		
	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力	•	自分の考えを論理的に英語で表現し、バラグラフを作成することができる。

Basic R/W II ENG213F

授業の概要 /Course Description

前期で学んだ英語の基本的な文法・語彙を復習しながら、より4技能を統合的に活用して英文の読解を学習する。英語の文章を読み理解するための英語のロジックを正しく理解し、各テキストの要旨や論理構成などをより深く学ぶ。身の回りの様々なトピックや時事問題に関する比較的平易な英語の文章を通して、チャンクリーディングや音読などの英語の基本的なリーディングストラテジーを身につける。またモデルとなる文章を参考にしながら、自分の考えを簡単な英語を用いて表現できる力を養い英語的発想に基づくライティング活動やプレゼンテーションにつなげる。

教科書 /Textbooks

Express Ahead (金星堂)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中指示する。

授業計画・内容 /Class schedules and Contents

- 1回 シラバスと概要の説明
- 2回 Unit 14 The Key to Long Life (読解と文法)
- 3回 Unit 14 The Key to Long Life (作文)
- 4回 Unit 18 Considering Others (読解と文法)
- 5回 Unit 18 Considering OthersI (作文)
- 6回 ライティング課題1
- 7回 Unit 19 Healthy Grades (読解と文法)
- 8回 Unit 19 Healthy Grades (作文)
- 9回 Unit 20 A History of the Internet (読解と文法)
- 10 回 Unit 20 A History of the Internet (作文)
- 11回 ライティング課題2
- 12 回 Unit 23 New Technology (読解と文法)
- 13 回 Unit 23 New Technology (作文)
- 14 回 Presentation
- 15回 まとめ

成績評価の方法 /Assessment Method

授業中の演習及び課題、小テスト(40%)、授業への参加度(10%)、試験の成績(50%)。

なお本科目の成績評価は TOEIC(R) L&Rスコアによって調整される。

事前・事後学習の内容 /Preparation and Review

次時の教材を十分予習し、段落構成、トピック、主張の拠り所、具体例など構造を分析すると同時に、未知語の調査、要約、予習指示問題を済 ませておくこと。また授業後には、ノートを整理しその時間の学習内容を十分把握しておくこと。

(Basic R/W II)

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

(Basic R/W II)

担当者名 富永 美喜 / Miki TOMINAGA / 非常勤講師

/Instructor

履修年次 2年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2008 2009 2010 2011 2012 2013 2015 2016 2017 2018 2019 O Ο Ο O O Ο

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department 科

授業で得られる「学位授与方針における能力」(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	総合的知識・理解		
技能	情報リテラシー		
	数量的スキル		
	英語力	•	英語のバラグラフ構造を理解して英文を読むことができる。
思考・判断・表現	課題発見・分析・解決力		
関心・意欲・態度	自己管理力		
	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力	•	自分の考えを論理的に英語で表現し、バラグラフを作成することができる。

Basic R/W II ENG213F

授業の概要 /Course Description

前期で学んだ英語の基本的な文法・語彙を復習しながら、より4技能を統合的に活用して英文の読解を学習する。英語の文章を読み理解するための英語のロジックを正しく理解し、各テキストの要旨や論理構成などをより深く学ぶ。身の回りの様々なトピックや時事問題に関する比較的平易な英語の文章を通して、チャンクリーディングや音読などの英語の基本的なリーディングストラテジーを身につける。またモデルとなる文章を参考にしながら、自分の考えを簡単な英語を用いて表現できる力を養い英語的発想に基づくライティング活動やプレゼンテーションにつなげる。

教科書 /Textbooks

Express Ahead (金星堂)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中指示する。

授業計画・内容 /Class schedules and Contents

- 1回 シラバスと概要の説明
- 2回 Unit 14 The Key to Long Life (読解と文法)
- 3回 Unit 14 The Key to Long Life (作文)
- 4回 Unit 18 Considering Others (読解と文法)
- 5回 Unit 18 Considering OthersI (作文)
- 6回 ライティング課題1
- 7回 Unit 19 Healthy Grades (読解と文法)
- 8回 Unit 19 Healthy Grades (作文)
- 9回 Unit 20 A History of the Internet (読解と文法)
- 10 回 Unit 20 A History of the Internet (作文)
- 11回 ライティング課題2
- 12 回 Unit 23 New Technology (読解と文法)
- 13 回 Unit 23 New Technology (作文)
- 14 回 Presentation
- 15回 まとめ

成績評価の方法 /Assessment Method

授業中の演習及び課題、小テスト(40%)、授業への参加度(10%)、試験の成績(50%)。

なお本科目の成績評価は TOEIC(R) L&Rスコアによって調整される。

事前・事後学習の内容 /Preparation and Review

次時の教材を十分予習し、段落構成、トピック、主張の拠り所、具体例など構造を分析すると同時に、未知語の調査、要約、予習指示問題を済 ませておくこと。また授業後には、ノートを整理しその時間の学習内容を十分把握しておくこと。

(Basic R/W II)

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

English Presentation

(English Presentation)

担当者名 クレシーニ アン / Anne CRESCINI / 基盤教育センターひびきの分室、プライア ロジャー / Roger PRIOR /

/Instructor 基盤教育センターひびきの分室

クレシーニ リズ / Riz CRESCINI / 非常勤講師

履修年次 2年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department 科

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	総合的知識・理解		
技能	情報リテラシー		
	数量的スキル		
	英語力	•	明確かつ適確な英語表現を用い、自分の意見や考えを主張することができる。
思考・判断・表現	課題発見・分析・解決力		
関心・意欲・態度	自己管理力		
	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力	•	データや情報を活用し、自分の意見の根拠を説明することができる。

English Presentation ENG214F

授業の概要 /Course Description

In this class, students will learn the fundamental skills necessary for English presentations. After a review of overview and comparative presentation styles, students will learn the techniques necessary to express their opinions, backed up by data and examples, and to give persuasive presentations. By the end of this course, students will be able to not only express their opinions, but acquire the necessary skills to form those opinions into solid presentations.

教科書 /Textbooks

English Presentation: Using Your Opinions to Persuade Others

By Anne Crescini

参考書(図書館蔵書には 〇) /References(Available in the library: 〇)

None

授業計画・内容 /Class schedules and Contents

Week One: Course Introduction

Week Two: Presentation #1; Introducing Yourself; Using Media and Non-Verbal Tools

Week Three: Presentation #2; Introducing Your Partner Week Four: Introduction to Informative Presentations Week Five: Presentation #3; Writing the Presentation Week Six: Attention Getters and Introductions Week Seven: Introduction, Body, Conclusion

Week Eight: Introduction to Comparative Presentations

Week Nine: Presentation #4; Introduction to Persuasive Presentations

Week Ten: Persuasive Presentation--Facts vs. Opinions Week Eleven: Presentation #5; Persuasive Presentation

Week Twelve: Presentation #6; The Importance of Teamwork in Presentation

Week Thirteen: Presentation #7; The Importance of Time Management in Presentation

Week Fourteen: Final Presentation Preparation

Week Fifteen: Final Presentation

English Presentation

(English Presentation)

成績評価の方法 /Assessment Method

In-class Presentations: 40%

Assignments and Quizzes: 20%

Final Presentation: 40%

(Assessment to be modified by TOEIC® L&R score)

事前・事後学習の内容 /Preparation and Review

Students are required to review the material from the previous week's class, as well as complete the necessary preparations for class the following week.

履修上の注意 /Remarks

Class presentations are very important. If you are absent without a proper excuse, you may fail this class.

担当者からのメッセージ /Message from the Instructor

Extensive Reading

(Extensive Reading)

担当者名 岡本 清美 / Kiyomi OKAMOTO / 基盤教育センターひびきの分室, 筒井 英一郎 / Eiichiro TSUTSUI / 基盤教育

/Instructor センターひびきの分室

工藤 優子 / Yuko KUDO / 非常勤講師

履修年次 2年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

 対象入学年度
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019

 Year of School Entrance
 Image: Contract of School Entract of

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department 科

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

	学位授与	方針における能力		到達目標
知識·	理解	総合的知識・理解		
		情報リテラシー		
技能		数量的スキル		
		英語力	•	様々なジャンルの文章を読み、読解力を向上させる。
思考・	判断・表現	課題発見・分析・解決力		
		自己管理力		
	# 05 #K #	社会的責任・倫理観		
関心・	・意欲・態度	生涯学習力		
		コミュニケーション力	•	英語で文章をまとめ、内容に対して意見を述べることができる。

Extensive Reading ENG215F

授業の概要 /Course Description

外国語学習において、その言語がどのような言語か、またどのように使われているのかを知るために、大量にその言語に触れること(インプット)は必要不可欠である。本科目では、多読(多聴)という手法を用いて、平易な英語で書かれた読み物(多読用図書)を日本語を解さずに理解する力をつける。大量のインプットを処理するために必要な読書速度の向上と基本語彙の習得も目指すとともに、自律的に英語を学習するための方略を身につける。また、多読での読書をまとめ、簡単な英語を用いて、口頭 もしくは文書で表現できる力を養う。本科目の到達目標は以下の通りとする。

- (1)多読用図書を大量に読む(聞く)ことで、英語のインプット量を補う。
- 、 (2)日本語に逐一訳さずに内容理解ができる。
- (3)適切な速度で読んで(聞いて)大意の把握ができる。
- (4)多読用図書で繰り返し使われる基本語彙を習得する。

教科書 /Textbooks

主に学術情報センター図書館(専門図書室)蔵書の多読用図書を利用する。他にプリント教材を配布する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

○古川昭夫他編著『英語多読完全ブックガイド』改訂第3版(コスモピア)

Extensive Reading

(Extensive Reading)

授業計画・内容 /Class schedules and Contents

授業の中心は各自の英語力に応じて多読用図書を読む多読・多聴である。

加えて、各週に以下の活動を行う。

第1週:オリエンテーション「多読・多聴とは」、MReader使用について

第2週:プレテスト(EPER) 第3週:プレテスト(語彙)

第4週:プレテスト(読書速度)

第5週:講義「サイトボキャブラリー」

第6週:演習「サイトボキャブラリー」

第7週:小テスト「サイトボキャブラリー」

第8週:講義「英語学習方略」 第9週:演習「英語学習方略」 第10週:小テスト「英語学習方略」

第11週:講義「英語で考える」 第12週:演習「英語で考える」 第13週:小テスト「英語で考える」

第14週:ポストテスト(読書速度、語彙)

第15週:ポストテスト(EPER)

成績評価の方法 /Assessment Method

多読課題 (70%)、小テストなど授業内課題 (30%)

なお、本科目の成績評価はTOEIC(R) L&Rスコアによって調整される。

事前・事後学習の内容 /Preparation and Review

- 1. 授業外での計画的な読書は必須である。学期当初から自律的に学習を進めること。
- 2. 授業で学んだ知識・技能を使えるようにするための練習を各自で行うこと。

履修上の注意 /Remarks

授業で学術情報センター図書館(専門図書室)の図書を利用するため、利用者証を毎時間持参すること。

図書の延滞や汚損・紛失が無いように十分留意すること。

パソコンを毎時間利用するので、学術情報センターと大学 (Moodle) 両方のユーザー名・パスワードを確認しておくこと。

担当者からのメッセージ /Message from the Instructor

自明のことであるが、英語を読む力を付けるためには英語を読むしかない。授業期間内に高校の英語リーディング教科書10~20冊分に相当する 量の図書を読むため、学習者の自律的・計画的な学習を求める。

Scientific R/W II

(Scientific R/W II)

担当者名 柏木 哲也 / Tetsuya KASHIWAGI / 基盤教育センターひびきの分室, 國﨑 倫 / Rin KUNIZAKI / 非常勤講師

/Instructor

履修年次 2年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2013 2014 2015 2016 2018 2008 2009 2010 2011 2012 2017 2019 \circ \circ \circ O O \circ

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department 科

※お知らせ/Notice 各クラスの担当教員は別途お知らせします。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	- 方針における能力			到達目標	
知識・理解	総合的知識・理解				
	情報リテラシー				
技能	数量的スキル				
	英語力	•	文章の論理構造を理解し、内容	浮をまとめることができる。	
思考・判断・表現	課題発見・分析・解決力				
	自己管理力				
	社会的責任・倫理観				
関心・意欲・態度	生涯学習力				
	コミュニケーション力	•	自分の考えを論理的に発信する	。 ことができる。	

Scientific R/W II ENG244F

授業の概要 /Course Description

科学技術の分野に関する平易な文章を通して、科学技術の分野で用いられる基本的な文型や表現を学習するとともに、基本的な語彙を学習し習得する。また「Scientific R/W I」で学習したパラグラフ構成方法や表現・語彙を活用し、自分の考えを、パラグラフの構成方法を意識しながら、論理的かつ明快な文章にまとめることができる力を養成する。授業修了時までに複数のパラグラフで構成される文章を書き、プレゼンテーションできるようになることを目指す。

教科書 /Textbooks

Writing Points ISBN4-7647-3939-0 金星堂

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業担当者が必要に応じて紹介する。

授業計画・内容 /Class schedules and Contents

- 1回 シラバスと概要の説明
- 2回 Chapter 13 Money & Taxes (読解)
- 3回 Chapter 13 Money & Taxes(文法と読解)
- 4回 Chapter 16 Social Networking (読解)
- 5回 Chapter 16 Social Networking (文法と読解)
- 6回 ライティング課題1
- 7回 Chapter 18 Paying with Plastic (読解)
- 8回 Chapter 18 Paying with Plastic (文法と表現)
- 9回 Chapter 19 CCTV (読解)
- 10回 Chapter 19 CCTV (文法と表現)
- 11回 ライティング課題2
- 12回 Chapter 21 Finding and Finishing Employment (読解)
- 13回 Chapter 21 Finding and Finishing Employment (文法と読解)
- 14回 Presentation
- 15回 まとめ

成績評価の方法 /Assessment Method

授業参加度...10%

課題...30%

小テスト...20%

試験...40%

Scientific R/W II

(Scientific R/W II)

事前・事後学習の内容 /Preparation and Review

次時の教材を十分予習し、段落構成、トピック、主張の拠り所、具体例など構造を分析すると同時に、未知語の調査、要約、予習指示問題を済 ませておくこと。また授業後には、ノートを整理しその時間の学習内容を十分理解しておくこと。

履修上の注意 /Remarks

各課の予習としてユニットごとに内容理解を課題として課すので、単語熟語の下調べと段落ごとの概要をまとめておくこと。

担当者からのメッセージ /Message from the Instructor

2019

Academic Writing

(Academic Writing)

担当者名 プライア ロジャー / Roger PRIOR / 基盤教育センターひびきの分室

/Instructor

履修年次 3年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

2013 2014 2016 2018 対象入学年度 2008 2009 2010 2011 2012 2015 2017 /Year of School Entrance O O Ο O O

対象学科 【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位报	受与方針における能力 である		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
IX RG	英語力	•	英語で書かれた学術的な文章の構造を理解し、その構造を利用して自分の考えを英語で述べることができる。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力		
	コミュニケーション力	•	学術的なコンテキストにおいて、自分の考えを論理的に表現することができる。

Academic Writing ENG303F

授業の概要 /Course Description

本コースでは、一つのテーマについて書かれた英語のパラグラフを拡大させて一つの論文に仕上げるための基礎的な方法を学習する。前半で、 自らの主張の根拠となる外部データなどの扱い方を学習してから、後半で様々な論文スタイルとイントロダクション・パラグラフの書き方を学 ぶ。学生は、一学期を通して、自ら選んだテーマについて情報を収集し、論文を書いていく。本コースでは以下のことを学習する。

- ① 英文のサマリーとパラフレーズの書き方
- ② Thesis statementの書き方
- ③ 英語で論点を立てる方法
- ④ 出典の扱い方

教科書 /Textbooks

Longman Academic Writing Series 4: Essays (Fifth Edition), by Alice Oshima and Ann Hogue (Pearson)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業開始後、担当者より指示します。

授業計画・内容 /Class schedules and Contents

Week 1 Introduction

Week 2 Chapter 1 Paragraph Structure

Week 3 Chapter 1 The Topic Sentence

Week 4 Chapter 2 Unity and Coherence

Week 5 Chapter 3 Using Outside Sources

Week 6 Chapter 3 Quoting and Paraphrasing

Week 7 Chapter 3 Summarizing

Week 8 Chapter 4 Parts of an Essay: The Introduction

Week 9 Chapter 4 The Thesis Statement

Week 10 Chapter 5 Process Essays

Week 11 Chapter 6 Cause/Effect Essays

Week 12 Chapter 7 Comparison/Contrast Essays

Week 13 Chapter 8 Argumentative Essays

Week 14 Preparing the Essay

Week 15 Completing the Essay

成績評価の方法 /Assessment Method

課題・小テスト:50% 期末小論文: 50%

Academic Writing

(Academic Writing)

事前・事後学習の内容 /Preparation and Review

学生は、毎週、指定された予習・復習をきんちんとしなければならない。

履修上の注意 /Remarks

この科目は、到達目標が高いため、学生は科学技術英語Ⅱを履修していることが望まれる。

担当者からのメッセージ /Message from the Instructor

The aim of this course is to guide you through the steps to writing your first essay in English. Sometimes it may be difficult, sometimes it may be frustrating, but ultimately it will surely be rewarding.

Topic Studies A

(Topic Studies A)

担当者名 柏木 哲也 / Tetsuya KASHIWAGI / 基盤教育センターひびきの分室

/Instructor

履修年次 3年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2018 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 \circ \circ 0 О O 0

対象学科

【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

※お知らせ/Notice 当該科目は隔年開講科目のため、来年度は開講されませんので注意してください。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	手方針における能力		到達目標
知識・理解	総合的知識・理解		
	情報リテラシー		
技能	数量的スキル		
	英語力	•	メディアを通して英語を聞き取り、ロジックを理解し応答することができる。
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力		
	コミュニケーション力	•	種々の使用目的に応じた形で簡単な英語を用いて、自分の考えを適切に書き表すことができる。

Topic Studies A ENG313F

授業の概要 /Course Description

この授業の目的は、各メディア(ニュース、映画、音楽)で使われている表現や単語を通じて英語表現やロジックを学ぶことである。英語で各 ジャンルに応じた特徴を学び、それに応じたアウトプットを練習していく。また日本語と英語のロジックがどのように異なるのかを対照言語学 的に学んでいく。

教科書 /Textbooks

特になし

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中紹介する

授業計画・内容 /Class schedules and Contents

1回 授業概要説明

2回 洋画叙述文聞き取り・説明1回目(第1シーン)

3回 洋画叙述文聞き取り・説明2回目(第2シーン)

4回 洋画叙述文聞き取り・説明3回目(第3シーン)

5回 ディクトグロス(グループ)1回目(単文)

6回 ディクトグロス(グループ)2回目(物語)

7回 ニュース英語1回目(ペア、聞き取り)(時事関連)

8回 ニュース英語2回目(ペア、聞き取り)(生活関連)

9回 ニュース英語コーパス学習1回目(機能語)

10回 ニュース英語コーパス学習2回目(内容語)

11回 ニュース英語のopinionに対する意見作成(ブレインストーム)

12回 ニュース英語のopinionに対する意見作成(推敲)

13回 ポップス聞き取り1回目(90年代)

14回 ポップス聞き取り2回目(2000年以降)

15回 まとめ

成績評価の方法 /Assessment Method

授業参加度20%、課題50%、小テスト30%

事前・事後学習の内容 /Preparation and Review

事前に配られた教材を十分予習し、段落構成、トピック、主張の拠り所、具体例など構造を分析すると同時に、未知語の調査および要約を済ませておくこと。また授業後には、ノートを整理しその時間の学習内容を十分把握しておくこと。

Topic Studies A

(Topic Studies A)

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

Topic Studies B

(Topic Studies B)

担当者名 筒井 英一郎 / Eiichiro TSUTSUI / 基盤教育センターひびきの分室

/Instructor

履修年次 3年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2013 2014 2018 2008 2009 2010 2011 2012 2015 2016 2017 2019 \circ O 0 O O Ο

対象学科

【選択】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学科

/Department

※お知らせ/Notice 当該科目は隔年開講科目のため、来年度は開講されませんので注意してください。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位报	受与方針における能力 である		到達目標				
知識・理解	総合的知識・理解						
	情報リテラシー						
+± 45	数量的スキル						
技能	英語力		興味のある分野について英語で書かれた文章を正しく理解し、その特徴を分析すること ができる。				
思考・判断・表現	課題発見・分析・解決力						
	自己管理力						
	社会的責任・倫理観						
関心・意欲・態度	生涯学習力						
	コミュニケーション力	•	興味のある分野について、自分の考えを適切に発信することができる。				

Topic Studies B ENG314F

授業の概要 /Course Description

本授業では、ICTや多様な聴解ストラテジーを活用しながら、口語英語をできるだけ正確に聞き取る力を養うと共に、各人のレベルに応じた量の 英語を、できるだけ流暢にかつ正確に話す力を養うことを目的とする。また、ビジネスの場面で実用的な英語の運用能力を高めるために、文法 的な誤りの少ない英文を書く力を養うことも目指す。本授業では以下の3つを到達目標とする。

- ① 国際的なビジネスの文脈で積極的にコミュニケーションを図ろうとする意欲を培うことができる。
- ② ICTや聴解ストラテジーを活用しながら、口語的な英語をできるだけ正確に聴解できる。
- ③ プレゼンテーションから質疑応答まで、レベルに応じた発信ができる。

教科書 /Textbooks

追って指示する

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

追って指示する

授業計画・内容 /Class schedules and Contents

Week 1: Orientation + Level assessment

Week 2: Hobbies

Week 3: Clothes and colors

Week 4: An active life

Week 5: Getting around

Week 6: Personality

Week 7: Cooking

Week 8: Assessing speaking and writing skills

Week 9: Weather

Week 10: Everyday activities

Week 11: Math, History, and Art

Week 12: A busy semester

Week 13: Favors and requests

Week 14: Before you travel

Week 15 Assessing presentation skills

成績評価の方法 /Assessment Method

- ① 試験・実技試験 60%
- ② 小テスト・授業内課題 20%
- ③ 授業外課題 20%

Topic Studies B

(Topic Studies B)

事前・事後学習の内容 /Preparation and Review

事前学習: 毎回の語彙リストの中の未知語の意味や発音の仕方を深く調べ、小テスト対策に臨むこと 事後学習: 授業後はその時間の復習課題を怠らないこと

履修上の注意 /Remarks

USBメモリなどの記憶媒体を携帯しておくこと

担当者からのメッセージ /Message from the Instructor

物理実験基礎

(Fundamentals of Experiments in Physics)

担当者名 金本 恭三 / Kyozo KANAMOTO / 環境技術研究所, 井上 浩一 / Koichi INOUE / 機械システム工学科(19~)

| instructor | 吉山 定見 | Sadami YOSHIYAMA | 機械システム工学科 (19~)

履修年次1年次単位2単位学期1学期授業形態実験・実習クラス/Year/Credits/Semester/Class Format/Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance O \circ O O O

対象学科 【必修】 エネルギー循環化学科, 機械システムエ学科, 建築デザイン学科

/Department

※お知らせ/Notice 補習物理の受講対象者は、補習科目の最終判定に合格しない限り単位の修得ができません。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位担	受与方針における能力		到達目標				
知識・理解	専門分野の知識・理解	•	物理現象の理解に必要な基礎的専門知識を修得する。				
技能	専門分野のスキル	•	技術者として必要な基本的な実験技術、解析技術を身につける。				
田本、羽除、東田	課題発見・分析・解決力	•	実験データの解析方法、物理現象に関する考察の進め方を修得する。				
思考・判断・表現 	ブレゼンテーション力	•	自らの思考・判断のブロセス及び結論を適切な方法で表現する手法を身につける。				
	実践力(チャレンジ力)						
	社会的責任・倫理観						
関心・意欲・態度	生涯学習力						
	コミュニケーション力	•	自分の考えを相手に効果的に伝え、討論できる能力を身につける。				
※学科により 学位増与	古針における能力が異なる場合があ	.i.l ≠	-				

※学科により、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。 物理実験基礎 PHY101M

授業の概要 /Course Description

高度に細分化した工学の分野において理解を深めるには、基礎的な物理現象を把握することが何より不可欠である。本授業では、各種物理実験 を体験し、測定を主体とする実験法の実習の解析手法を学習する。工学分野の基礎となる物理量の測定を通して様々な計測装置に触れるととも に、測定の進め方、測定データの解析方法、物理現象に対する考察の進め方、レポートの作成方法を習得する。

教科書 /Textbooks

初回のガイダンスの時に配布

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

高校の物理の教科書や参考書

知的な科学・技術文章の書き方、 中島利勝 塚本真也 共著、コロナ社

授業計画・内容 /Class schedules and Contents

1回目: ガイダンス(履修上の諸注意)

2回目以降: 以下の実験項目を行う。なお,レポート作成後は指定された日に査読を受けること。修正の指摘に応じレポートを再提出すること

- ・密度測定
- ・ボルダの振り子
- ヤング率

成績評価の方法 /Assessment Method

日常の授業への取り組み・・52% レポート・・48% (レポート未提出者は、単位を認めない。)

事前・事後学習の内容 /Preparation and Review

本講義では実験を行うが,実験を行う前には必ず前もって配布したテキストの該当箇所にて予習を行うこと.

未完成のレポート提出は,大幅な減点もしくは未提出扱いとなる.

実験を行った後は必ずきちっとレポートを仕上げて提出のこと.

履修上の注意 /Remarks

実験を行う前に実験テキストに目を通しておくこと。

実験開始5分前には実験場所に集合すること。指定された日に必ず実験を行い,自分の力でレポートを仕上げること。他人のレポートや著作物を 丸写し(引き写しともいう)して作成したレポートを提出した場合は単位を認めない。詳しくは初回のガイダンス時に指示があるので,聞き漏 らすことのないように注意する事。

物理実験基礎

(Fundamentals of Experiments in Physics)

担当者からのメッセージ /Message from the Instructor

現在行われている最先端の実験の多くは、これら基本的な測定法の積み重ねといえます。そこで人任せにしたりせず、自分の経験とするよう心がけましょう。この授業での発見と感動が、やがて偉大な大発明へとつながるかも知れないのですから。 レポート作成を通じて著者として実験結果を他者に伝える基本を身につけてください。

キーワード /Keywords

物理、精密測定、密度、測定誤差、力学、重力加速度、振り子、ヤング率、弾性率

微分・積分

(Calculus)

担当者名 山本 勝俊 / Katsutoshi YAMAMOTO / エネルギー循環化学科(19~)

/Instructor

履修年次1年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class Format

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 O Ο O O Ο

対象学科 【必修】 エネルギー循環化学科

/Department

※お知らせ/Notice 補習数学の受講対象者は、補習科目の最終判定に合格しない限り単位の修得ができません。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	5方針における能力		到達目標				
知識・理解 専門分野の知識・理解 ● 関		•	数としての微分、積分の基礎知識を修得する。				
技能	専門分野のスキル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	化学・生物化学の分野でよく使用する微分、積分のスキルを修得する。				
思考・判断・表現	課題発見・分析・解決力						
応考・中断・衣坑	ブレゼンテーション力						
	実践力(チャレンジ力)						
 関心・意欲・態度	社会的責任・倫理観						
	生涯学習力						
	コミュニケーション力						

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

微分・積分 MTH102M

授業の概要 /Course Description

本講義では、線形代数の基礎と微分・積分について講義する。化学・環境分野の問題を理論的・定量的に解くための能力を育成することを目標とする。

教科書 /Textbooks

授業で紹介する。

参考書(図書館蔵書には 〇) /References(Available in the library: 〇)

授業で紹介する。

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス、行列の基本
- 2 連立一次方程式と行列
- 3 逆行列
- 4 ベクトル空間と基底ベクトル
- 5 写像と行列
- 6 固有値と固有ベクトル
- 7 中間試験
- 8 基本的な関数の性質
- 9 微分の定義と意味・基本的な関数の微分・微分の線形性
- 10 合成関数の微分
- 11 偏微分、化学での微分の利用
- 12 区分求積と定積分、積分と微分の関係
- 13 基本的な関数の積分、置換積分、部分積分
- 14 積分の計算例
- 15 重積分

成績評価の方法 /Assessment Method

中間テスト 50%

期末テスト 50%

事前・事後学習の内容 /Preparation and Review

事前学習用の課題が配布された場合は、必ず授業までにすべて解答し、授業に持参すること。また、事前学習用の映像資料がある場合は、必ず 授業までに視聴し、授業までに練習問題を解いておくこと(1~2時間程度の事前学習が必要です)。授業中に自分の力で解けなかった問題は 、授業後の学習で自力で解いてみること(1~2時間程度の事後学習が必要です)。

履修上の注意 /Remarks

わからない点はオフィスアワーを利用して質問するように。それ以外の時間も可能な範囲で対応します。

微分・積分

(Calculus)

担当者からのメッセージ /Message from the Instructor

自身の学力や興味にあわせて、上に挙げたような参考書や問題集を併用するように。

一般化学

(General Chemistry)

/Year of School Entrance

担当者名 天野 史章 / Fumiaki AMANO / エネルギー循環化学科(19~)

/Instructor

履修年次 1年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

 対象入学年度
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019

対象学科 【必修】 エネルギー循環化学科 【選択】 機械システム工学科, 建築デザイン学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	-方針における能力		到達	目標	
知識・理解 専門分野の知識・理解 ●		化学分野の専門科目の理解に必要な基礎知識			
技能	専門分野のスキル				
思考・判断・表現	課題発見・分析・解決力				
心传: 中断: 农坑	ブレゼンテーション力				
	実践力(チャレンジ力)				
関心・意欲・態度	社会的責任・倫理観				
	生涯学習力				
	コミュニケーション力				

0

Ο

O

Ο

 \circ

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

一般化学 CHM100M

授業の概要 /Course Description

化学の基本理論の理解を深めるため、単純な水素原子を出発点にしながら、やや複雑ないくつかの原子について考える。原子がつながって分子 になる理由、分子どうしが引き合う理由を理解する。熱力学・化学反応と化学平衡・電気化学・光と分子の関係についても学ぶ。

教科書 /Textbooks

『物理化学 (化学はじめの一歩シリーズ)』(真船文隆・渡辺正 著、化学同人)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

『アトキンス 物理化学要論 (第6版)』(P. W. Atkins・J. de Paula 著、千原秀昭・稲葉章 訳、東京化学同人)

授業計画・内容 /Class schedules and Contents

- 1 原子と電子
- 2 水素原子
- 3 演習(1)
- 4 多電子原子
- 5 分子の形成
- 6 分子間力
- 7 演習(2)
- 8 熱力学 第一法則
- 9 熱力学 第二法則
- 10 演習(3)
- 11 反応の速さ
- 12 化学平衡
- 13 演習(4)
- 14 電気化学
- 15 光と分子

成績評価の方法 /Assessment Method

演習 80%

期末試験 20%

事前・事後学習の内容 /Preparation and Review

該当箇所をテキストや参考書等で予習し、講義資料やノートを用いて十分な復習を行うことが必要である。

履修上の注意 /Remarks

高校化学の知識が必要である。

一般化学

(General Chemistry)

担当者からのメッセージ /Message from the Instructor

環境問題を考えるとき、物質の化学的変化への認識は避けられません。我々の生活やその他の生命活動、資源の利用などの根本が物質の真の変化に基いていることを理解しましょう。

キーワード /Keywords

量子化学、波動関数、分子軌道、分子間力、エンタルピー、エントロピー、ギブズエネルギー、活性化エネルギー、化学ポテンシャル、電極電位、光エネルギー

化学実験基礎

(Basic Chemistry Experiments)

担当者名 寺嶋 光春 / Mitsuharu TERASHIMA / エネルギー循環化学科(19~), 伊藤 洋 / Yo ITO / エネルギー循環化

/Instructor 学科(19~)

履修年次1年次単位2単位学期2学期授業形態実験・実習クラス/Year/Credits/Semester/Class Format/Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O O O O O Ο

対象学科 【必修】 エネルギー循環化学科

/Department

※お知らせ/Notice 補習化学の受講対象者は、補習科目の最終判定に合格しない限り単位の修得ができません。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	5方針における能力		到達目標
知識・理解	専門分野の知識・理解		
技能	専門分野のスキル	•	化学実験の基礎技術を学習し、薬品、器具類の正しい使用法を身につける。
	課題発見・分析・解決力	•	実験結果の分析や解釈の方法を学び、正しく評価する能力を修得する。
思考・判断・表現	プレゼンテーション力	•	実験の目的、方法、結果及び結果の解釈や考察をレポートとしてまとめるための基礎的な能力を修得する。
	実践力(チャレンジ力)	•	実験手順や作業の意味を考え理解するとともに、よりよい方法を考えて実践する力を身につける。
関心・意欲・態度	社会的責任・倫理観	•	化学物質や実験器具の操作に対する危険性を把握し、常に安全を意識する姿勢を身につ ける。
	生涯学習力		
	コミュニケーション力		チームで行う共同実験を通じてメンバー間のコミュニケーションをはかり、さらに実験 指導の教員、EA、TAとの会話能力を身につける。

化学実験基礎 CHM101M

授業の概要 /Course Description

高度に細分化した化学および環境工学の分野において理解を深めるには、基礎的な自然科学現象を把握することが重要である。本授業では、各種の基礎的実験を体験し、測定を主体とする実験法の実習の解析手法を学習する。

化学および環境工学の基礎となる物理量の測定を通して様々な計測装置に触れるとともに、測定の進め方、測定データの解析方法、自然科学現 象に対する考察の進め方、レポートの作成方法を習得する。

教科書 /Textbooks

実験テキスト(初回のガイダンスの時に配布)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

実験を安全に行うために 第8版(化学同人)、続 実験を安全に行うために 第4版(化学同人)、実験データを正しく扱うために(化学同人)、 ○化学のレポートと論文の書き方(化学同人)、物理化学実験のてびき(化学同人)、高校の化学および物理の教科書や参考書

授業計画・内容 /Class schedules and Contents

1回目: ガイダンス(履修上の諸注意)

2回目以降: グループに分かれて、以下の実験を行う。レポート作成後は指定された日に査読を受けること。修正の指摘に応じレポートを再提出すること。

- ・濁度
- ・表面張力および浮力
- ・重力加速度
- ・熱電対

成績評価の方法 /Assessment Method

日常の授業への取り組み・・50% レポート・・50%

事前・事後学習の内容 /Preparation and Review

実験を行う前には必ず前もって配布したテキストの該当箇所にて予習を行うこと。

未完成のレポート提出は、大幅な減点もしくは未提出扱いとなる。実験を行った後は必ずレポートを仕上げて提出すること。

履修上の注意 /Remarks

実験を行う前に実験テキストに目を通しておくこと。

指定された日に必ず実験を行い,自分の力でレポートを仕上げること。他人のレポートや著作物を丸写し(引き写しともいう)して作成したレ ポートを提出した場合は単位を認めない。詳しくは初回のガイダンス時に指示があるので,聞き漏らすことのないように注意する事。

化学実験基礎

(Basic Chemistry Experiments)

担当者からのメッセージ /Message from the Instructor

現在行われている最先端の実験の多くは、基本的な測定法の積み重ねといえます。そこで人任せにしたりせず、自分の経験とするよう心がけま しょう。

微分方程式

(Theory of Differential Equations)

担当者名 朝見 賢二 / Kenji ASAMI / エネルギー循環化学科(19~), 寺嶋 光春 / Mitsuharu TERASHIMA / エネルギー

/Instructor 循環化学科(19~)

履修年次 1年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O Ο O O O Ο

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授-	与方針における能力		到達目標
知識・理解	専門分野の知識・理解	•	微分方程式の理解に必要な基礎的専門知識を修得する。
技能	専門分野のスキル	•	修得した微分方程式の基礎知識を演習により実践し、技術開発に活用する技能を身につ けている。
思考・判断・表現	課題発見・分析・解決力		
心为一种的一致抗	プレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

微分方程式 MTH106M

授業の概要 /Course Description

本講義では2年生から本格的に専門の講義が開始されるのに先立ち、化学と関係の深い数学分野につき基礎的学力を養うことを目的とする。具体的には、微積分の基礎の復習から入り、線形微分方程式の解法と、近似解の求め方へと学習を進める。

教科書 /Textbooks

「やさしく学べる微分方程式」(共立出版)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

〇「化学を学ぶ人の基礎数学」(化学同人)、「工業数学上・下」(ブレイン図書出版)

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス、微分方程式とは
- 2 微分方程式と解
- 3 微分方程式を解く前に 微分の復習を兼ねて
- 4 微分方程式を解く前に 積分の復習を兼ねて
- 5 変数分離形の微分方程式
- 6 変数分離形に直せる微分方程式
- 7 1階線形微分方程式
- 8 演習
- 9 線形微分方程式の解
- 10 2 階定係数線形同時微分方程式
- 11 2 階定係数線形非同時微分方程式 未定係数法
- 12 2 階定係数線形非同時微分方程式 定数変化法
- 13 高階線形微分方程式
- 14 近似解
- 15 演習

成績評価の方法 /Assessment Method

平常点 20% 期末テスト 80%

履修上の注意 /Remarks

事前・事後学習の内容 /Preparation and Review

高等学校の理系の数学(微分・積分を含む)を習得しておくこと。

授業で出された課題を十分に反復練習しておくこと。

本授業の専用ノートを持参すること。

微分方程式

(Theory of Differential Equations)

担当者からのメッセージ /Message from the Instructor

研究者・技術者は、現象を理解するだけでなく、それをモデル化し、定量的に解析することも要求される。そのために必要とされる数学的素養 をしっかりと身につけて欲しい。

基礎有機化学

(Basic Organic Chemistry)

/Instructor

藍川 昌秀 / Masahide AIKAWA / エネルギー循環化学科(19~)

 履修年次
 1年次
 単位
 2単位
 学期
 1学期
 授業形態
 講義
 クラス

 /Year
 /Credits
 /Semester
 /Class Format
 /Class

2013 2014 2018 対象入学年度 2008 2009 2010 2011 2012 2015 2016 2017 /Year of School Entrance \circ O O O O Ο

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授	与方針における能力		到達目標
知識・理解 専門分野の知識・理解 ● 7			有機化合物の構造、結合、反応に関する基礎知識を修得する。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力	•	本講義で修得する知識を組み合わせて、有機化学に関する諸問題を解決するための論理 的思考力を修得する。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

基礎有機化学 CHM120M

2019

授業の概要 /Course Description

有機化学は、化学の中で物理化学や無機化学などと並んで極めて重要な学問領域である。本講義では、有機化合物の構造や反応性について理解 し、有機化学の基礎を修得することを目標とする。

教科書 /Textbooks

現代有機化学(上)第6版(K. ピーター C. ヴォルハルト / ニール E. ショアー) 化学同人

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

無

授業計画・内容 /Class schedules and Contents

- 1 化学に関する基礎の復習
- 2 有機分子の構造と結合(1)化学結合と8電子則、形式電荷、Lewis構造式、極性結合
- 3 有機分子の構造と結合(2)共鳴構造
- 4 有機分子の構造と結合(3)分子軌道と共有結合、混成軌道
- 5 構造と反応性(1)化学反応の速度論と熱力学、酸・塩基
- 6 構造と反応性(2)酸・塩基の反応
- 7 構造と反応性(3)Lewis酸・塩基
- 8 アルカンの構造・立体配座
- 9 アルカンの反応、シクロアルカン
- 10 立体異性体(1)キラルな分子、光学活性
- 11 立体異性体(2)絶対配置、複数の立体中心を持つ分子
- 12 ハロアルカンの性質と反応(1)ハロアルカンの性質、求核置換反応
- 13 ハロアルカンの性質と反応(2)求核置換反応の反応機構と反応性に影響を与える因子
- 14 ハロアルカンの性質と反応(3)一分子脱離反応
- 15 ハロアルカンの性質と反応(4)二分子脱離反応

成績評価の方法 /Assessment Method

期末試験 100%

事前・事後学習の内容 /Preparation and Review

次回の講義範囲の教科書を読んで十分に予習してくること

講義で出題する演習問題を講義後、再度復習し、理解すること

基礎有機化学

(Basic Organic Chemistry)

履修上の注意 /Remarks

テキストをよく読み、演習問題を解くこと

有機化学Ⅰ、有機化学Ⅱ、有機合成化学、高分子化学、有機化学実験の基礎となる科目であるので十分に予復習を行い、理解すること

担当者からのメッセージ /Message from the Instructor

テキストに出てくる専門用語や記述の仕方になれることが大切であり、重要です。そのためによく予習、復習を行ってください

基礎無機化学

(Basic Inorganic Chemistry)

担当者名 山本 勝俊 / Katsutoshi YAMAMOTO / エネルギー循環化学科(19~)

/Instructor

/Year

履修年次 1年次

単位 2単位 学期 2学期 授業形態 講義 クラス

対象入学年度 /Year of School Entrance

2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
					0	0	0	0	0	0	

/Class Format

対象学科 【必修】 エネルギー循環化学科

/Credits

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

/Semester

学位授与	手方針における能力		到達目標
知識・理解	専門分野の知識・理解	_	元素の性質を決定付けている電子軌道の概略と各元素特性についての基礎知識を修得す る。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力		各族ごとに有する特性を理解し、環境に関する諸問題を解決するための論理的思考力を 身につける。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
天 心:心心:思度	生涯学習力		
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

基礎無機化学 CHM130M

/Class

授業の概要 /Course Description

本講義では、大学で学ぶ無機化学系科目の最初の科目として、「原子の構造」、「電子軌道」、「化学結合」、「酸・塩基」を取り上げ、その基礎的・導入的な講義を行う。

本講義の到達目標は、

- ・原子の構造や電子軌道の姿を、大学生が理解すべきレベルで正しく理解し、図示できるようになる
- ・化学結合の基礎的な考え方を修得し、後に開講される「無機化学」での学修に繋げられるようになる
- ・酸および塩基の定義とその役割を説明できるようになるである。

教科書 /Textbooks

〇『基礎無機化学』 山田康洋・秋津貴城 著 化学同人 2013年 ¥2,400(税別)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

〇『シュライバー・アトキンス無機化学(上)第6版』 M.Weller・T.Overton・J.Rourke・F.Armstrong 著 東京化学同人 2016年 ¥6,500(税別)

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス、イントロダクション
- 2原子の構造
- 3 ボーアの原子モデル
- 4 原子核
- 5 中間試験 1
- 6 電子の粒子性と波動性
- 7 シュレーディンガー方程式 1
- 8 水素原子のシュレーディンガー方程式
- 9 電子軌道の姿
- 10 多電子原子
- 11 中間試験 2
- 12 化学結合、共有結合とイオン結合
- 13 極性と電気陰性度、結合の強さ
- 14 酸解離定数と酸の強さ
- 15 ブレンステッド=ローリー酸塩基、ルイスの酸塩基

成績評価の方法 /Assessment Method

中間試験 1 30% 中間試験 2 30% 期末試験 40%

基礎無機化学

(Basic Inorganic Chemistry)

事前・事後学習の内容 /Preparation and Review

前回の講義内容を1時間程度復習し、十分に理解した上で講義に臨むこと。

事前学習用の課題が配布された場合は、必ず授業までにすべて解答し、授業に持参すること。また、事前学習用の映像資料がある場合は、必ず 授業までに視聴し、授業までに練習問題を解いておくこと。

|講義中に配布された問題は、講義後にもう一度自分の力で解いてみること(約30分程度必要)。

履修上の注意 /Remarks

毎回、関数電卓必携(スマホ等の代替使用は不可)。

前年度の成績がFだった者が再試験登録する場合、授業に出席する必要はありませんが、もちろん出席してもかまいません。出席しない場合、中間試験の日程を調整しますので、担当教員に問い合わせてください。

再試験登録・再履修登録をする場合、登録時に担当教員に問い合わせをする必要はありません。

担当者からのメッセージ /Message from the Instructor

力学基礎

(Dynamics)

担当者名 西谷 龍介 / Ryusuke NISHITANI / 非常勤講師

/Instructor

履修年次 1年次 単位 2単位 学期 2学期 授業形態 講義 クラス Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2013 2014 2016 2018 2008 2009 2010 2011 2012 2015 2017 2019 O O O O O O

対象学科 【選択】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	5方針における能力	到達目標
知識・理解	専門分野の知識・理解 ●	力学に関する基礎学力を身につける。
技能	専門分野のスキル	
思考・判断・表現	課題発見・分析・解決力	
心传。中国:汉坑	プレゼンテーション力	
	実践力(チャレンジ力)	
 関心・意欲・態度	社会的責任・倫理観	
	生涯学習力	
	コミュニケーション力	

※機械システム工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。 力学基礎 PHY140M

授業の概要 /Course Description

身近な世界から宇宙に至る自然を理解し,生活と産業の中の科学と技術の応用を考えていくには,物理学の基本的理解が必要である.生物の現象や機能も,つきつめるとすべて物理学の法則に従っている.まず,力学の基礎からはじめ,その際,物理量の表わし方,有効数値,次元解析なども紹介する.力学の基本として,速度と加速度,力と運動の法則,仕事とエネルギー,回転運動を表現するのに必要不可欠な角運動量とトルク(力のモーメント)の意味と使い方を学ぶ.

次に,熱現象とその背後の法則を学ぶ.熱伝達の3つの形態とその性質,分子運動論の考え方と使い方,熱力学第一,及び同第二法則のの考え方と使い方を学ぶ.

現象と関連する概念を理解するだけではなく,微積分を用いた物理量と物理法則,ベクトル表現とその計算法,初等的な微分方程式とその解法 も学ぶ.

以上の内容は関連する専門科目への準備,前提となると思われる,

教科書 /Textbooks

潮 秀樹、上村 洸

「やさしい基礎物理(第2版)」

森北出版社

2400円 + 税

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

- 1.G.ヘルマンス, W.ドレンカン「物理の頭で考えよう!」講談社ブルーバックス, 2014年.
- 2.K.スワルツ「物理がわかる実例計算101例」講談社ブルーバックス,2014年.
- 3.原康夫「基礎物理学(第5版)」学術図書出版社,2017年.
- 4.ハリデイ他「物理学の基礎[1]力学」培風館,2003年.アメリカの大学1,2年向け教科書.説明の仕方は丁寧で面白い.
- 5.ハリデイ他「物理学の基礎[2]波・熱」培風館,2003年.流体についての記述もわかりやすい.
- 6 . ハリデイ他「物理学の基礎[3]電磁気学」培風館,2003年.

力学基礎

(Dynamics)

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス,物理学の考え方と方法
- 2 速度と加速度(1) 1次元系
- 3 速度と加速度(2) 2次元系,3次元系
- 4 力と運動の法則とその簡単な系への応用
- 5 運動方程式とその解法:速度比例抵抗,単振動
- 6 仕事とエネルギー
- 7 角運動量とトルク
- 8 中間試験
- 9 電磁現象の基礎、電荷とクーロンの法則
- 10 電流と磁場
- 11 ガウスの法則、ビオ・サバールの法則
- 12 アンペールの法則
- 13 電磁誘導、マクスウェルの方程式
- 14 波動と光、重ね合わせの原理、反射と屈折
- 15 光の回折と干渉

成績評価の方法 /Assessment Method

中間試験 30%, 期末試験 40%, レポート30%の割合で評価する.

事前・事後学習の内容 /Preparation and Review

指定された範囲の予習と、授業内容の復習を行うこと。

履修上の注意 /Remarks

法則の現象的な理解とともに、数学による表現自身も理解する。また、そこで用いられた物理量、数式表現(ベクトル、積分、微分方程式など)を学び、理解すること。さらに演習問題をやることにより、物理法則、数学を習得する。

担当者からのメッセージ /Message from the Instructor

授業内容に関連した例題,補足説明,情報の提供を通じて、現象と関連する概念を理解するだけではなく,微積分を用いた物理量と物理法則 ,ベクトル表現とその計算法,初等的な微分方程式とその解法にも習熟してほしい.

キーワード /Keywords

複雑な現象のモデル化と物理法則,数式表現,数値的分析、有効性と限界.

確率論

(Probability Theory)

担当者名 情報システム工学科全教員(○学科長)

/Instructor

履修年次 1年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2013 2014 2018 2008 2009 2010 2011 2012 2015 2016 2017 2019 \circ \circ O O O O

対象学科 【選択】エネルギー循環化学科,建築デザイン学科,環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

4方針における能力		到達目標
専門分野の知識・理解	•	確率・統計に関する基礎理論及び基礎知識を修得する。
専門分野のスキル		
課題発見・分析・解決力		
プレゼンテーション力		
実践力(チャレンジ力)		
社会的責任・倫理観		
生涯学習力		
コミュニケーション力		
	専門分野の知識・理解 専門分野のスキル 課題発見・分析・解決力 ブレゼンテーション力 実践力(チャレンジカ) 社会的責任・倫理観 生涯学習力	専門分野の知識・理解 専門分野のスキル 課題発見・分析・解決力 ブレゼンテーション力 実践力(チャレンジカ) 社会的責任・倫理観 生涯学習力

※情報メディア工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。 確率i角 MTH101M

授業の概要 /Course Description

情報通信ネットワーク、制御システム、マルチメディア信号処理の設計、感知メカニズム、電子機器やその部品となる集積回路及びそれらを動かすソフトウエアの設計など、様々な情報技術の応用事例を学び、情報技術を広く俯瞰できることを目的とする。講義内容は、新入生や情報システム工学科以外の学生に向けの導入レベルとする。

教科書 /Textbooks

担当教員の指示したもの

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

担当教員の指示したもの

授業計画・内容 /Class schedules and Contents

(1) 15週のうち、最初の1週はガイダンスを実施する。

(2) 2週目以降は、通信、ネットワーク、システム制御、信号処理、人工知能、セキュリティ、感知メカニズム、生体情報処理、集積回路、ソフトウエアに関する分野から応用事例の紹介をする。

成績評価の方法 /Assessment Method

授業への取り組み態度(30%)

レポート(70%)

事前・事後学習の内容 /Preparation and Review

事前・事後学習については担当教員の指示に従うこと。また、新聞・雑誌等の情報技術に関連した記事にできるだけ目を通すようにすること。

履修上の注意 /Remarks

私語をしないこと。ノートはこまめにとること。都合により、授業のスケジュールを変更することがある。

担当者からのメッセージ /Message from the Instructor

新入生や情報システム工学科以外の学生にもわかりやすい授業内容です。

キーワード /Keywords

情報技術、画像処理、人工知能、セキュリティ、データ解析、集積回路、生体情報処理、システム制御、ネットワーク、ソフトウェア

一般物理学

(General Physics)

担当者名 伊藤 洋 / Yo ITO / エネルギー循環化学科 (19~)

/Instructor

履修年次 1年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2018 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 О Ο O O O Ο

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	一般物理学の理解に必要な基礎的専門知識を修得する。
技能	専門分野のスキル	•	力学、熱力学、電磁気学など物理の基本的な演算と応用方法を修得する。
思考・判断・表現	課題発見・分析・解決力		
	ブレゼンテーション力		
	実践力(チャレンジ力)		
 関心・意欲・態度	社会的責任・倫理観		
我心:忠敬:忠茂	生涯学習力		
	コミュニケーション力		

一般物理学 PHY100M

授業の概要 /Course Description

地球温暖化、土壌劣化・汚染、水汚染、放射性廃棄物、地盤沈下等の環境問題を考えるうえで基礎となる物理学の基礎を学ぶことを目的とする。また、環境問題の概要を理解する目的から様々な環境問題の現状についても講義を行う。難解な物理学を避け、土の力学、水理学、水文学、伝熱を取り上げ、入門編として学習する。

教科書 /Textbooks

特になし

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

特になし

授業計画・内容 /Class schedules and Contents

- 1.ガイダンス,単位(SI単位、次元解析)
- 2.環境問題I(土と科学)
- 3 . 土の力学I(土の基本的性質、土の粒度)
- 4 . 土の力学II(土の透水性、有効応力、圧密)
- 5.環境問題II(廃棄物処理・処分)
- 6 . 水理学I (液体の性質-密度、表面張力-、静水圧)
- 7.水理学Ⅱ(連続の式、沈降、粘性、層流と乱流)
- 8.中間演習
- 9.環境問題Ⅲ(地球温暖化)
- 10.水文学I(水循環、水収支、降水、蒸発散)
- 11.水文学II(地表水、地下水、流出モデル)
- 12 環境問題Ⅳ(放射線の科学)
- 13. 伝熱(フーリエの法則、熱伝導方程式)
- 14.後半演習
- 15.まとめ

成績評価の方法 /Assessment Method

平常点 40% (学習態度、演習等)

期末試験 60%

事前・事後学習の内容 /Preparation and Review

授業内容、特に授業中に実施する演習問題の復習を行うこと。

履修上の注意 /Remarks

関数電卓を持参すること。

適時、演習を実施し、レポートの提出を求める。

一般物理学

(General Physics)

担当者からのメッセージ /Message from the Instructor

環境物理学を土、水、熱、放射線の視点から学びます。

線形代数

(Linear Algebra)

野上 敦嗣 / Atsushi NOGAMI / 環境生命工学科 (19~)

/Instructor

履修年次 1年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 O O O O O

対象学科

【必修】 環境生命工学科 【選択】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	線形代数学の理解に必要な基礎的専門知識を修得する。
技能	専門分野のスキル	•	行列、行列式、ベクトル空間、固有値、対角化など線形代数の基本的な演算と応用方法 を修得する。
思考・判断・表現	課題発見・分析・解決力		
心名:中的:众坑	ブレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
我心:忠敬:忠陵	生涯学習力		
	コミュニケーション力		
※理控告令工管(4)以及不管	シナ (+) 一学が大き方 ナウナコーセッチ スタビナ	コンド田	3.15.7.18.0.18.15.15.15.15.15.15.15.15.15.15.15.15.15.

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

線形代数 MTH110M

授業の概要 /Course Description

線形代数は行列やベクトルを扱う数学で、もともとは連立1次方程式の解法として発達した理論である。近年、コンピュータの発達とともに航空機の構造計算や分子の電子論計算などの理工学シミュレーションや3次元CGなどゲームや映像の世界、経済予想やマーケティングのための統計解析など社会科学分野においても極めて重要な手段となっている。実社会で最も有用な数学といっても過言ではない。本授業では、四則演算だけを前提知識としてベクトルや行列の基本的な演算や応用方法を演習を交えて丁寧に教える。逆行列、行列式、線形空間(ベクトル空間)、固有値・固有ベクトル、対角化、最小二乗法までの線形代数学の基礎を習得する。

教科書 /Textbooks

佐藤和也、只野裕一、下本陽一「はじめての線形代数学」講談社

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

〇石井園子「やさしく学べる線形代数」、その他は必要に応じて授業で別途指示する。

授業計画・内容 /Class schedules and Contents

- 01 線形代数学とは(線形代数学ことはじめ、線形代数学の応用先)
- 02 ベクトルによる表現(ベクトルとは、ベクトルを用いた平面上の直線の表現)
- 03 行列、ベクトルの演算(行列とは、行列、ベクトルの演算)
- |04|| さまざまな行列(転置とは、正方行列、対角行列、単位行列、対称行列、三角行列、行列のベキ)
- 05 逆行列と行列式 (連立1次方程式と行列、2次正方行列と逆行列、余因子展開・余因子行列)
- 06 連立1次方程式1(逆行列を用いた連立1次方程式の解法、クラメールの公式、ガウスの消去法)
- | 07 | 連立 1 次方程式 2 (同次連立 1 次方程式、連立 1 次方程式の解の性質、 1 次独立と 1 次従属、行列のランク)
- 08 中間試験
- 09 線形変換と行列の関係(線形写像と線形変換、行列による回転、合成変換、逆変換)
- 10 固有値と固有ベクトル(固有値と固有ベクトルの幾何学的な意味、行列の対角化、ケイリー・ハミルトンの定理)
- 11 工学問題における固有値と固有ベクトル(微分方程式、連立微分方程式の行列による表現、振動問題)
- 12 ベクトルによる演算(ベクトル、行列の微分・積分、内積によるさまざまな表現、正射影ベクトル、ベクトルの外積)
- 13 ベクトル空間・基底ベクトル (次元と基底ベクトル、正規直交基底、基底ベクトルの変換)
- 14 対称行列の性質・対角化(対称行列とは、対称行列の性質、直交行列、対称行列の対角化)
- 15 2次形式・最小二乗法 (2次形式とその符号、最小二乗法)

成績評価の方法 /Assessment Method

演習・宿題30%中間試験30%期末試験40%

事前・事後学習の内容 /Preparation and Review

教科書通りの順番で授業は行うので、授業計画に従って事前に教科書の次回の内容を予習しておくこと。演習で解かなかった教科書中の他の問題も復習を兼ねて自分で解くこと。

線形代数

(Linear Algebra)

履修上の注意 /Remarks

教科書は図が多くて分かりやすく演習も豊富なので自習にも最適です。予習復習、特に復習を何度も行ってください。授業で行わなかった演習 問題も全て自分で解いてみてください。

担当者からのメッセージ /Message from the Instructor

線形代数を難しいと感じる学生は多いですが、四則演算の機能しかないコンピュータすなわち小学生高学年でも計算できる算術です。こうした 数学的トレーニングを積むことは、就職試験でも重要な論理的思考を養うには最適です。必ず自分の手を動かし、自分の頭で考え、どうしても 分からなければ自分から質問する、この訓練が社会人力を高めていきます。トレーニングに近道はありません。

化学熱力学

(Chemical Thermodynamics)

担当者名 秋葉 勇 / Isamu AKIBA / エネルギー循環化学科 (19~)

/Instructor

履修年次 1年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 O O O O Ο

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	専門分野の知識・理解	•	熱力学の理解に必要な基礎的専門知識を修得する。		
技能	専門分野のスキル	•	熱力学で必要とされる基礎データや数式などを、課題に対応して利用できる技能を身に つける。		
思考・判断・表現	課題発見・分析・解決力	•	1際の熱化学現象に対して、熱力学的考察の進め方を提示することができる。		
100-6 T14/1 100C	ブレゼンテーション力				
	実践力(チャレンジ力)				
 関心・意欲・態度	社会的責任・倫理観				
	生涯学習力				
	コミュニケーション力				

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

化学熱力学 CHM110M

授業の概要 /Course Description

物理化学は化学の原理を探求する学問であり、化学反応や物質の性質を理解するうえで必要不可欠である。本講義では、一連の物理化学系科目の最初として化学熱力学について講義する。

教科書 /Textbooks

アトキンス 物理化学(上) 第10版 東京化学同人

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

アトキンス 物理化学問題の解き方 (学生版) (第10版) 英語版

授業計画・内容 /Class schedules and Contents

- 1. イントロダクション、基本的な用語、次元、単位、数学的方法
- 2 . 気体の性質1(完全気体)
- 3. 気体の性質2(実在気体)
- 4. 熱力学第一法則1(いろいろな熱力学的過程、仕事と熱、内部エネルギー)
- 5. 熱力学第一法則2(熱エネルギーとエンタルピー)
- 6. 熱力学第一法則3(状態関数と完全微分)
- 7. 化学反応と熱力学第一法則
- 8. 中間まとめ
- 9. 熱力学第二法則と第三法則1(カルノーサイクルと熱効率)
- 10.熱力学第二法則と第三法則2(過程の方向性、エントロピー)
- 11. 熱力学第二法則と第三法則3(いろいろな過程のエントロピー変化)
- 12 化学反応におけるエントロピー変化
- 13.自由エネルギー1(ギブスエネルギーとヘルムホルツエネルギー)
- 14.自由エネルギー2(熱力学の基本式、マックスウェルの関係式、化学反応における自由えけるぎ一変化)
- 15.まとめ

成績評価の方法 /Assessment Method

中間試験 40% 期末試験 60%

事前・事後学習の内容 /Preparation and Review

テキストおよび参考書を読んで講義の範囲を予習しておくこと。

講義中に出る課題を自力で解答を導けるようになるまで復習すること。

数学的方法を良く用いるので、これまでに学んできた微分積分を再度復習しておくこと。

化学熱力学

(Chemical Thermodynamics)

履修上の注意 /Remarks

遅刻しての入室は厳禁。講義中のスマートフォン、携帯電話等の使用は禁止。撮影も禁止。 講義にはノートと電卓を持参すること。

担当者からのメッセージ /Message from the Instructor

物理化学は化学の根幹となる学問分野の一つです。化学熱力学はその基本となるもので、ここをクリアーできないと、その後に続く物理化学系 の科目を理解することが困難になります。ここでしっかりと修得してください。

キーワード /Keywords

仕事、熱、エネルギー、エンタルピー、エントロピー、自由エネルギー

基礎生物化学

(Introduction to Biological Chemistry)

/Instructor

/Year

履修年次 1年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Credits /Semester /Class Format /Class

中澤 浩二 / Koji NAKAZAWA / 環境生命工学科 (19~)

対象入学年度 /Year of School Entrance

2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
						0	0	0	0	0	

対象学科 【必修】 エネルギー循環化学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	専門分野の知識・理解 ●	•	生化学の理解に必要な基礎的専門知識	を修得する。	
技能	専門分野のスキル				
思考・判断・表現	課題発見・分析・解決力				
心传"中国" 纹坑	プレゼンテーション力				
	実践力(チャレンジ力)				
 関心・意欲・態度	社会的責任・倫理観				
	生涯学習力				
	コミュニケーション力			·	

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

基礎生物化学 BIO110M

授業の概要 /Course Description

生物内では膨大な化学反応が効率的に営まれ、生命活動を維持している。本講義では、生命活動の基本となる生体分子(アミノ酸、タンパク質 、糖質、脂質、核酸)の化学、および生体膜の特徴と酵素反応を学ぶことによって、生物化学の基礎知識を習得する。

教科書 /Textbooks

田宮信雄・村松正實・八木達彦・遠藤斗志也 訳 「ヴォート基礎生化学第5版」 東京化学同人 2017年 ¥7,600

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業計画・内容 /Class schedules and Contents

- 1. 導入(生物化学の重要性)
- 2. 生体分子と水
- 3. アミノ酸1(構造と分類)
- 4. アミノ酸2(性質)
- 5. タンパク質 1 (構造)
- 6. タンパク質 2 (性質)
- 7. タンパク質3(解析)
- 8. 糖質
- 9. 前半の復習、確認テスト
- 10. 核酸 1 (構造)
- 11. 核酸 2 (性質)
- 12. 脂質
- 13. 生体膜
- 14. 酵素
- 15. 総復習

成績評価の方法 /Assessment Method

授業への取り組み・演習 10%

確認テスト 45%

期末テスト 45%

事前・事後学習の内容 /Preparation and Review

事前の予備学習を行うとともに、授業後には反復学習により理解を深めること。

履修上の注意 /Remarks

授業内容の要点プリントを配布する。

基礎生物化学

(Introduction to Biological Chemistry)

担当者からのメッセージ /Message from the Instructor

本講義は、我々の体の中で起こっている現象を理解するための学問です。また、環境と生体は密接な関係にあり、環境技術を学ぶ中で生命現象 を理解しておくことは非常に重要です。

基礎化学工学

(Introduction to Chemical Engineering)

担当者名 上江洲 一也 / Kazuya UEZU / 環境生命工学科(19~)

/Instructor

 履修年次
 2年次
 単位
 2単位
 学期
 1学期
 授業形態
 講義
 クラス

 /Year
 /Credits
 /Semester
 /Class Format
 /Class

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 O O O O O

対象学科 【必修】 エネルギー循環化学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	専門分野の知識・理解	•	化学工学の理解に必要な基礎的専門知識を修得する。		
技能	専門分野のスキル	•	化学工学で必要とされる基礎データや数式などを、課題に対応して利用できる技能を身 につける。		
思考・判断・表現 ̄ ̄ ̄ ̄ ̄	課題発見・分析・解決力	•	工業プロセスに対して、化学工学的考察の進め方を提示することができる。		
	ブレゼンテーション力				
	実践力(チャレンジ力)				
関心・意欲・態度	社会的責任・倫理観				
	生涯学習力				
	コミュニケーション力				

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

基礎化学工学 CHM260M

授業の概要 /Course Description

化学工学の目的とその学問体系ついて概説する。また、化学工学を習得するために不可欠な物質収支・エネルギー収支などの工学計算を、単位系(SI単位)を意識して行えるようにする。さらに、化学装置内の流れを理解するために、流体の分類、流動状態、および流体の圧力損失などについて学習する。

教科書 /Textbooks

基礎化学工学(化学工学会編) 培風館(ISBN 978-4-5630-4555-5)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

化学工学 改訂第3版 一解説と演習一 朝倉書店(ISBN 978-4-2542-5033-6)

化学工学の計算法(化学計算法シリーズ) 東京電機大学出版局(ISBN 978-4-5016-1690-8)

ベーシック化学工学 化学同人(ISBN 978-4-7598-1067-7)

はじめて学ぶ化学工学 工業調査会(ISBN 978-4-7693-4202-1)

化学工学便覧 改訂六版 丸善(ISBN 978-4-6210-4535-0)

授業計画・内容 /Class schedules and Contents

- 1 進め方の説明、化学工学の目的とその学問体系
- 2 単位換算
- 3 物質収支(1)基礎式、計算手順、代数方程式の解
- 4 物質収支(2)手がかり物質の活用
- 5 物質収支(3)反応操作の物質収支
- 6 流体の圧縮性と粘性
- 7 円管内の流れ(1) Reynolds数
- 8 前半のまとめ
- 9 円管内の流れ(2)層流、力のつり合い
- 10 円管内の流れ(3)乱流
- 11 円管内の流れ(4)摩擦係数とFanningの式
- 12 充填層の流れ
- 13 流れ系のエネルギー収支(1)機械的エネルギー保存の法則
- 14 流れ系のエネルギー収支(2)配管内流れのエネルギー損失
- 15 まとめ

成績評価の方法 /Assessment Method

平常点(小テスト等) 20%

中間テスト 20%

期末テスト 60%

基礎化学工学

(Introduction to Chemical Engineering)

事前・事後学習の内容 /Preparation and Review

事前学習:予習として、テキストをよく読み、特に、用語・公式・定義などを確認しておくこと。

事後学習:次週の小テストに向けて、十分に講義内容の復習をしておくこと。

履修上の注意 /Remarks

計算問題は、基本的に手計算。

担当者からのメッセージ /Message from the Instructor

化学工業においてプラントを設計・制御するためには、化学工学の素養が不可欠です。将来、化学分野の技術者を目指している学生は、化学工学の目的とその体系を理解した上で、工学計算が苦もなくできるように努力してください。

キーワード /Keywords

物質収支、エネルギー収支、化学装置内の流れ、工学計算

環境統計学

(Statistics for Environmental Engineering and Planning)

加藤 尊秋 / Takaaki KATO / 環境生命工学科(19~), 安井 英斉 / Hidenari YASUI / エネルギー循環化学科

/Instructor (19~)

履修年次 2年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Credits /Semester /Class Format /Class /Year

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 /Year of School Entrance O O O O O

対象学科 【必修】 環境生命工学科 【選択】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授-	与方針における能力		到達目標
知識・理解	専門分野の知識・理解	•	基本的な分布、母集団の平均値の比較など、データの統計解析の基礎となる事項を実際 に使える形で身につける。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力		
心名:中的:	ブレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

ENV210M 環境統計学

授業の概要 /Course Description

環境問題の考察においては、ある事象と別の事象との間に明らかな差があるかどうか判定が必要となるケースが多い。たとえば、「自動車のア イドリングをストップすると本当に二酸化炭素排出量を減らすことができるか」という疑問に答えるためには、測定データを統計的に解析して 、ストップの有無における有意差を判定することになる。一方、実験や調査で得られる測定データにはさまざまな誤差が含まれているため、科 学的な結論を得るには、統計の技法で誤差を適切に処理する必要がある。環境統計学では、これらの基本的な技法を学ぶ。また、演習問題とし て環境問題の解析事例を取り上げ、解析のポイントと直感力を養う。これら技法学習と事例演習の組み合わせにより、基礎学問の数学を実践的 に活用していくことができるようになる。

教科書 /Textbooks

石村園子(2006) 「やさしく学べる統計学」 共立出版、2160円

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中に紹介

授業計画・内容 /Class schedules and Contents

- 1 母集団と標本、確率の表現1 (例:ポワソン分布)
- 2 母集団と標本、確率の表現2 (例:二項分布)
- 3 データの特徴を捉える1(ヒストグラム、スタージェスの公式)
- 4 確率分布の整理、中間演習(1)
- 5 データの特徴を捉える2(正規確率紙による可視化)
- 6 母集団と標本、確率の表現3 (例:正規分布、確率密度関数)
- 7 母集団と標本、確率の表現4 (例:指数分布、確率密度関数)
- 8 確率密度関数の整理、中間演習(2)
- 9 最小二乗法と回帰直線
- 10 統計的推定(よい推定量とは、点推定と区間推定)
- 11 統計的検定1(母平均は狙った値か:正規分布による検定)
- 12 統計的検定2(母平均は狙った値か:t分布による検定)
- 13 統計的検定3(母平均は狙った値か:t分布による検定つづき)、中間演習(3)
- 14 統計的検定4(2つの母平均は等しいか:t分布による検定)
- 15 統計的検定5(発展的問題)

成績評価の方法 /Assessment Method

小テスト・レポート 20%

中間演習 40%

期末テスト 40%

事前・事後学習の内容 /Preparation and Review

翌週の講義で用いる数理的手法の予習を行っておくこと。講義後には、復習が必要である。

環境統計学

(Statistics for Environmental Engineering and Planning)

履修上の注意 /Remarks

各回の授業終了時に復習や次回の講義に向けた予習として読むべき資料を提示するので、各自学習を行うこと。 また、ポワソン分布、二項分布、指数分布、正規分布等について予習しておくこと。

関数電卓、定規、方眼紙を持参すること。

知識を身につけるために原則として毎回課題(小テスト、レポート、中間演習等)を出す。

担当者からのメッセージ /Message from the Instructor

環境研究や実験データ分析に不可欠な統計学の基本を学ぶ。統計的思考法に慣れてほしい。

キーワード /Keywords

物理化学実験

(Experiments in Physical Chemistry)

担当者名 朝見 賢二 / Kenji ASAMI / エネルギー循環化学科(19~), 天野 史章 / Fumiaki AMANO / エネルギー循環化

/Instructor 学科(19~)

今井 裕之 / Hiroyuki IMAI / エネルギー循環化学科 (19~)

履修年次 2年次 単位 4単位 学期 1学期 授業形態 実験・実習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	- -方針における能力		到達目標
理解	専門分野の知識・理解		
	専門分野のスキル	•	物質の物理化学的性質を測定する実験技術や、実験結果の理論的な解析手法を修得す る。
思考・判断・表現	課題発見・分析・解決力	•	実験を通して物理化学的な思考力を身につける。
	ブレゼンテーション力	•	レポートの作成訓練を通して、ブレゼンテーション力を修得する。
	実践力(チャレンジ力)	•	実験技能の訓練を通して、実践に役立つ能力を修得する。
関心・意欲・態度	社会的責任・倫理観		実験の計画、安全確保、適正な破棄物の処理などの訓練を通して社会的責任・論理観を身につける。
	生涯学習力		
	コミュニケーション力	•	グループのメンバーと協力しながら実験を進めていくためのコミュニケーション力を修得する。
	理解 判断・表現	専門分野のスキル 課題発見・分析・解決力 ブレゼンテーション力 実践力(チャレンジ力) 社会的責任・倫理観 生涯学習力	理解 専門分野の知識・理解 専門分野のスキル ● 課題発見・分析・解決力 ブレゼンテーションカ ● 実践力(チャレンジカ) ・ 社会的責任・倫理観 生涯学習力

物理化学実験 CHM280M

授業の概要 /Course Description

物理化学の各種測定技術や、実験結果の理諭的な解析手法を習得し、それを通じて物理化学的な思考ができるよう訓練する。実験と観察によって化学を理解することが大切である。

教科書 /Textbooks

実験テキスト

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

アトキンス物理化学(東京化学同人)

アトキンス物理化学要論(東京化学同人)

- 〇 化学のレポートと論文の書き方(化学同人)
- 物理化学実験のてびき(化学同人)

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス・朝見
- 2 凝固点降下
- 3 分配係数
- 4 反応速度(1)
- 5 反応速度(2)
- 6 ガイダンス・今井
- 7 酸解離定数(1)
- 8 酸解離定数(2)
- 9 吸着(1)
- 10 吸着(2)
- 11 ガイダンス・天野
- 12 pH滴定
- 13 電位差滴定
- 14 ゼータ電位
- 15 モル伝導率

物理化学実験

(Experiments in Physical Chemistry)

成績評価の方法 /Assessment Method

実験操作・態度50%

レポート50%

ただし、すべての実験を行い、それぞれの実験に対するレポートを期限内に提出した者だけを評価の対象とする。なお、未完成のレポートの提出は認めない。

事前・事後学習の内容 /Preparation and Review

事前に実験テキストをよく読んでおくこと。実験に関連する内容について、物理化学の教科書や参考書などを通続しておくこと。 また、各実験後には原理や手法の理解を深め、レポートを作成すること。

履修上の注意 /Remarks

スタッフの指示に従い、安全に十分注意すること。

担当者からのメッセージ /Message from the Instructor

実験を通して物理化学系の講義で学んだことの理解を深めてください。

キーワード /Keywords

CHM211M

O

化学平衡と反応速度

(Chemical Equilibrium and Rate of Reaction)

担当者名 朝見 賢二 / Kenji ASAMI / エネルギー循環化学科(19~)

/Instructor

履修年次 2年次 単位 2単位 学期 1学期 授業形態 講義 クラス Vear (Credits (Semester (Class Format) (Class Format)

/Year /Credits /Semester /Class Format /Class 2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019

/Year of School Entrance

対象学科 【必修】 エネルギー循環化学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	物理化学の基礎をなす化学平衡、反応速度論に対する基礎知識を修得する。
技能	専門分野のスキル	•	平衡計算、反応速度解析、予測法について、演習を通して実践に役立つ能力を修得す る。
思考・判断・表現	課題発見・分析・解決力	•	化学反応で観察される現象を、物理化学的な観点から理論的に解釈、考察する能力を身 につける。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
聖心・黄欲・能度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。 化学平衡と反応速度

授業の概要 /Course Description

物理化学は化学の原理を探求する学問であり、化学を学ぶ人にとっては必要不可欠なものである。本講義では化学熱力学に引き続き、化学平衡 および反応速度論について学習する。

教科書 /Textbooks

アトキンス物理化学 第8版 (上、下) (東京化学同人)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

アトキンス物理化学問題の解き方(学生版) 第8版 英語版 (東京化学同人)

「これならわかる熱力学」 鈴木孝臣著(三共出版)

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス、相図
- 2 相の安定性と相転移
- 3 混合物の熱力学的な記述
- 4 自発的な化学反応
- 5 平衡状態
- 6 平衡に対する圧力の影響
- 7 平衡の温度による変化
- 8 演習
- 9 反応速度
- 10 積分型速度式 1次反応
- 11 積分型速度式 2次反応
- 12 平衡に近い反応
- 13 反応速度の温度依存性
- 14 速度式の解釈
- 15 演習

成績評価の方法 /Assessment Method

平常点 20% 期末試験 80%

事前・事後学習の内容 /Preparation and Review

当日行われる授業範囲について、教科書を事前によく読んでおくこと。

授業で出される課題を中心に、復習および演習を十分に行うこと。

化学平衡と反応速度

(Chemical Equilibrium and Rate of Reaction)

履修上の注意 /Remarks

授業には、本講義専用のノートと関数電卓を持参すること。 化学熱力学の履修を前提として講義を進める。

担当者からのメッセージ /Message from the Instructor

物理化学は原理を理解することだけでなく、それを使って正確な値を導けることが重要である。

キーワード /Keywords

有機化学I

(Organic Chemistry I)

李 丞祐 / Seung-Woo LEE / エネルギー循環化学科(19~)

担当者名 /Instructor

履修年次 2年次 単位 2単位 学期 1学期 授業形態 講義 クラス Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2018 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 0 O O O О O

対象学科

【必修】 エネルギー循環化学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力」(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	有機化合物の官能基構造、反応性、合成の反応機構に関する基礎知識を修得する。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力	•	有機化合物の反応性、反応機構を官能基や立体構造、電子移動の観点から考察する力を 身につける。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

有機化学Ⅰ

CHM221M

授業の概要 /Course Description

基礎有機化学で学んだ分子構造や結合をベースに有機化学反応の反応機構および合成を学ぶ。特に、求核反応や脱離反応に対する反応機構と速度論、それに関連した官能基化合物(例えば、アルコール、アルケン、アルキン、π電子系)の反応と性質、合成について解説する。

教科書 /Textbooks

現代有機化学(上)第6版(K.ピーター・C.ヴォルハルト/ニール・E.ショアー) 化学同人

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

基礎有機化学(R. J. Fessenden/J. S. Fessenden)化学同人の他

授業計画・内容 /Class schedules and Contents

- 1 二分子求核置換反応(SN2)
- 2 一分子求核置換反応(SN1)
- 3 ハロアルカンの脱離反応(E1とE2)
- 4 アルコール性質、合成および合成戦略
- 5 アルコールの反応
- 6 エーテルの化学
- 7 中間まとめと例題演習
- 8 アルケンの求電子付加反応
- 9 アルケンの反応:ヒドロホウ素化-酸化の他
- 10 アルキンの性質と結合
- 11 アルキンの求電子付加反応
- 12 非局在化したπ電子系
- 13 共役ジエンの特性と反応
- 14 例題演習
- 15 まとめ

成績評価の方法 /Assessment Method

中間試験 45%

レポート 10%

期末試験 45%

事前・事後学習の内容 /Preparation and Review

指定された範囲の予習と、授業内容に関連した練習問題と章末問題の復習を行うこと。

履修上の注意 /Remarks

基礎有機化学で学んだ炭素結合や軌道論を復習しておくこと。

有機化学I

(Organic Chemistry I)

担当者からのメッセージ /Message from the Instructor

今後、高級有機化学反応を学ぶ際の準備として、テキストに登場する新しい用語・人名反応をしっかりと覚えるとともに関連した例題を自分の 力で解いてみる練習が必要。

キーワード /Keywords

求核置換反応、脱離反応、アルコール、エーテル、アルケン、アルキン、非局在化

無機化学

(Inorganic Chemistry)

/Instructor

履修年次 2年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 O O O O O O

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	4方針における能力	到達目標
知識・理解	専門分野の知識・理解 ●	原子の特性に基づいた分子の性質に関する知識を修得する。
技能	専門分野のスキル	
思考・判断・表現	課題発見・分析・解決力 ●	物質が示す特性を原子・分子の性質に立脚して論理的に考察する能力を修得する。
100 100 100	ブレゼンテーション力	
	実践力(チャレンジ力)	
 関心・意欲・態度	社会的責任・倫理観	
K /U * /& M * /8/ &	生涯学習力	
	コミュニケーション力	

無機化学 CHM231M

授業の概要 /Course Description

原子の性質は電子の存在状態に依存し、原子と原子の結合にも電子の状態が大きく影響を与える。本講義では、原子中における電子の配置や挙動に基づいて、原子間に形成される結合状態や分子の性質・構造について解説する。

本講義を通して、原子中の電子状態と原子同士の結合の仕組みや結合の種類との関連性についての基礎知識を身に付け、分子の性質・構造を電子状態から理解する能力を養う。

教科書 /Textbooks

『シュライバー・アトキンス無機化学第4版(上・下)』 田中勝久・平尾一之・北川進(訳) 東京化学同人 2008年 7,020円(上)、6,912円(下)

『シュライバー・アトキンス無機化学第6版(上・下)』 田中勝久・平尾一之・北川進(訳) 東京化学同人 2016年 7,020円(上)、7,020円(下)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

『化学結合と分子の構造』 三吉克彦 (著) 講談社 2006年 4,104円

『基礎無機化学―構造と結合を理論から学ぶ』 山田 康洋・秋津 貴城 (著) 化学同人 2013年 2,592円

- ○『フレッシュマンのための化学結合論』 西本 吉助 (著) 化学同人 1996年 2,376円
- ○『ハウスクロフト無機化学』 異 和行・西原 寛・穐田 宗隆・酒井 健 (訳) 東京化学同人 2012年 7,020円(上)、6,912円(下)
- ○『アトキンス物理化学第8版(上)』 千原 秀昭・中村 亘男 (訳) 東京化学同人 2009年 6,156円
- ○『無機・分析化学演習』 竹田 満洲雄・棚瀬 知明・高橋 正・北沢 孝史 (著) 東京化学同人 1998年 本体3,800円

授業計画・内容 /Class schedules and Contents

- 1. 原子と電子
- 2. 電子の軌道
- 3. 多電子原子の軌道
- 4. イオン結合【イオン化】
- 5. イオン結合【結晶状態】
- 1 イオノ結合 【結晶状態
 共有結合【電子配置】
- 7. 演習
- 8. 共有結合【原子価結合法】
- 9. 共有結合【分子軌道法】
- 10. 共有結合【分子軌道法・単純系】
- 11. 共有結合【分子軌道法・複雑系】
- 12. 演習Ⅱ
- 13. 配位結合
- 14. 水素結合
- 15. 金属結合と固体の構造

成績評価の方法 /Assessment Method

演習 50%

期末試験 50%

無機化学

(Inorganic Chemistry)

事前・事後学習の内容 /Preparation and Review

当日の授業の内容を反復すること

履修上の注意 /Remarks

「基礎無機化学」で学習した内容、特に量子化学・電子軌道の箇所を事前に反芻・理解しておくこと

担当者からのメッセージ /Message from the Instructor

初学者には難度が高い内容になるので、集中して取り組むこと

キーワード /Keywords

原子構造、分子構造、結晶構造、電子状態、軌道

化学産業技術論

(Technology in the Chemical Industry)

担当者名 飯田 汎 / Hiroshi IIDA / 非常勤講師

/Instructor

履修年次 2年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2013 2014 2015 2016 2017 2018 2019 2008 2009 2010 2011 2012 /Year of School Entrance 0 O O O O

対象学科 【選択】 エネルギー循環化学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解		
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力		
心传"中的" 农坑	ブレゼンテーション力		
	実践力(チャレンジ力)	•	化学産業により社会の持続的発展を維持する意欲を養う。
	社会的責任・倫理観	•	化学産業の役割、及び化学技術者の使命を身につける。
関心・意欲・態度	生涯学習力		現代社会が抱える問題に関心を持ち、化学技術者として取り組むべき課題を見い出す意 欲を身につける。
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

化学産業技術論 CHM290M

授業の概要 /Course Description

- (1)21世紀の地球社会を持続発展的に営むために、化学産業はどうあるべきか。
 - ・21世紀社会の展望と、産業の役割について、また、技術者の使命感について語ります。
 - ・化学産業に、資源・エネルギー、材料、生命工学、環境など広義の化学産業技術を含みます。
- (2)未来の展望を欠いたままで、若い技術者に、技術進歩だけを語ることはできません。 現代社会がかかえる様々な問題を理解し、多くの課題を超えたうえで、技術者のリーダーシップ を発揮し、新しい社会を作り出すために取り組むべき課題を具体的に提示します。
- (3)15回の講義を通して、最後に以下の質問に答えられるよう課題の提示を示します。
 - *技術者としての動機づけはできたか
 - * 社会と技術は密接不可分の関係にあることを理解できたか
 - * 上昇志向で物事に取り組むことのキッカケが育まれたか

教科書 /Textbooks

飯田汎『岐路に立つ日本の行方 -再び開拓・創造の躍動感を-』丸善プラネット(2010)※必携

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

○飯田汎『ニッポン技術者の使命』丸善出版(2005)

○東千秋・飯田汎・雀部博之『技術革新を支える物質の科学』放送大学教育振興会(2008)

田島慶三『現代化学産業論への道』化学工業日報社(2008)

化学産業技術論

(Technology in the Chemical Industry)

授業計画・内容 /Class schedules and Contents

【第1回】1.岐路に立つ日本と技術者の使命 (1)6回目の危機にある日本の行方 <日本のビジョン> "文化・知識・環境融合社会"の創造 <思考の転換 5つ道具>

【第2回】1.岐路に立つ日本と技術者の使命 (2)社会と産業をめぐる5つの潮流 <技術者のミッション> 千年持続社会の構築を目指して

【第3回】2.人間社会と化学の役割

化学産業の役割と化学技術の使命 ①資源・エネルギーと化学 ②食料問題と化学

【第4回】2.人間社会と化学の役割

化学産業の役割と化学技術の使命 ③ 健康と化学 ④生活と化学

【第5回】3.産業構造の変革にむけた化学産業の役割

化学産業の歴史と特徴 ①近代化学工業発展の足跡 ②わが国の化学産業の特徴

【第6回】4.イノベーションとパラダイムの転換 の意義

(1)科学技術とイノベーション (2)成功度仮説とその検証

【第7回】【第8回】5.現代社会とイノベーション

文化・知識・環境融合社会の形成にむけた課題(事例)

(1)知識社会とイノベーション

①記録・記憶技術 ②ナノテクノロジー ③バイオ・ゲノム科学

【第9回】5.現代社会とイノベーション

(2)環境調和社会とイノベーション

①物質の循環とプロセス・イノベーション

②未来のエネルギー資源とその利用

【第10回】5.現代社会とイノベーション

(3)生活文化社会とイノベーション

①高分子材料の高性能・高機能化

②金属・無機材料の高性能化・高機能化

【第11回】6.創造革命で世界のイニシアティブを (1)グローバル世界の国々と日本 創造性を考える

【第12回】 (2)日本人の心で世界を変える 再び創造・開拓で躍動感を

【第13回】 (3)Jマインド・イノベーション 日本の伝統文化と化学技術

【第14回】 (4)Jマインド・イノベーション 21世紀産業の開拓と化学技術 Q&Aで理解する日本と世界

【第15回】 まとめ 『化学産業技術で日本の未来を』

【第16回】最終テスト

成績評価の方法 /Assessment Method

小テスト、自由記述40%最終テスト60%

事前・事後学習の内容 /Preparation and Review

- (1) 適宜、示します。
- (2)「イノベーション」について、考えます。

履修上の注意 /Remarks

受講前に、一瞬、以下のことを考えて、受講に臨んでください。

*技術者としての動機づけ *現代社会の姿に対する認識 *上昇志向をもった取り組み姿勢

4~7月の毎月、2日間にわたって4コマの講義を行います。

開講日時については時間割を参照して下さい。

4月 4コマ 1.岐路に立つ日本と技術者の使命(1、2回)

2.人間社会と化学の役割(3、4回)

5月 4コマ 3.産業構造の変革にむけた化学産業の役割(5回)

4.イノベーションとパラダイムの転換の意義(6回)

5. 現代社会とイノベーション(7、8回)

6月 4コマ 5.現代社会とイノベーション (9、10回)

6.創造改革で世界のイニシアティブを(11、12回)

7月 3コマ 6.創造革命で世界のイニシアティブを(13、14回) 7.まとめ(15回)

...,

担当者からのメッセージ /Message from the Instructor

社会と技術は密接不可分な関係にあります。そのために、現代社会の姿についての理解が不可欠です。

こうした認識を深めるためにも、できるだけ多くの、仲間とともに参加してみてください。

本講義を受講することで、さまざまな知識とともに、社会人としての人格の大切さを身につけられるよう、

一緒に考えたいと思います。

キーワード /Keywords

化学産業、化学技術、文化・知識・環境融合社会、イノベーション、パラダイム転換、グローバル教育、

化学産業技術論

(Technology in the Chemical Industry)

キーワード /Keywords

日本人の心(Jマインド)、成功度仮説、化学、物質、エネルギー、生命工学、環境

有機化学実験

(Experiments in Organic Chemistry)

担当者名 秋葉 勇 / Isamu AKIBA / エネルギー循環化学科 (19~), 李 丞祐 / Seung-Woo LEE / エネルギー循環化学

/Instructor 科 (19~)

履修年次 2年次 単位 4単位 学期 2学期 授業形態 実験・実習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2010 2012 2013 2014 2018 2019 2008 2009 2011 2015 2016 2017 /Year of School Entrance 0 0 O O O O

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解		
技能	専門分野のスキル	•	有機反応・合成を実践する際に必要な基本的なスキルを修得する。
思考・判断・表現	課題発見・分析・解決力	•	実験の結果を詳細に分析し、その結果が得られた原因を解き明かす能力を修得する。
心名:中四:衣坑	プレゼンテーション力	•	実験の成果をまとめて他人に分かるように報告する能力を修得する。
	実践力(チャレンジ力)	•	座学で得られる知識をより確実なものにするために、化学では実験が必要不可欠である ことを確認する。
関心・意欲・態度	社会的責任・倫理観		有機化合物が社会に対してどのような影響を与えるのかを理解し、正しく取り扱う倫理 観を養う。
	生涯学習力		
	コミュニケーション力	•	グループのメンバーと協力しながら実験を進めていくためのコミュニケーション力を修 得する。

有機化学実験 CHM281M

授業の概要 /Course Description

有機化学実験の基礎技術を修得し、それらを組み合わせた応用実験へと展開できる能力を身につけることを目標とする。

教科書 /Textbooks

独自に作成したものを配布

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

特に指定しない

授業計画・内容 /Class schedules and Contents

1週目 安全講習、レポートの書き方、前半の実験内容に

関する講義

2週目 合成・反応実験(1)求核置換反応

3週目 合成・反応実験(2)求核置換反応

4週目 合成·反応実験(3)芳香族求電子置換反応 5週目 合成·反応実験(4)芳香族求電子置換反応

6週目 合成・反応実験(5)カルボニル化合物の反応

7週目 合成・反応実験(6)カルボニル化合物の反応

8週目 後半の実験内容に関する講義

9週目 合成・反応実験(7)Diels-Alder反応

10週目 合成・反応実験(8)Grignard試薬の合成

11週目 合成・反応実験(9)アルコールの酸化

12週目 合成・反応実験(10)ケトンの還元

13週目 合成・反応実験(11)ルミノールの合成と化学発光

14週目 合成・反応実験(12)スペクトル解析

15週目 総括

有機化学実験

(Experiments in Organic Chemistry)

成績評価の方法 /Assessment Method

すべて出席し、実験を行ったものに対して、実験ノートの内容、レポート (試験・口述諮問に代替する場合あり)で評価する。 レポートの評価基準は以下の通りである。

- 1.実験内容の理解度・論理性 60%
- 2.実験操作に対する理解度 30%
- 3. 書式・体裁 10%

ただし、締切期限を過ぎて提出されたレポートは評価されない。

実験ノートの評価基準は以下の通りである。

- 1 ,事前の予習(反応機構の理解、測定結果の予測、実験手順の整理)が十分になされている 30%
- 2.実際に行った操作、反応中の変化等、必要なことが記録されているか 30%
- 3. 必要な結果が記載され、正しく整理されているか 40%

事前・事後学習の内容 /Preparation and Review

事前学習内容

- ・実験ノートに実験で取り扱う反応の反応式、反応機構をまとめておくこと。
- ・機器分析等を行う場合、その原理を調べ、実験で得られる結果を予測しておくこと。
- ・取り扱う試薬等の安全性について調べておくこと。
- ・実験操作をフローチャートにまとめておくこと。

事後学習内容

- ・実験結果をノートに正しく整理すること。
- ・レポートを期日までに作成し、遅れずに提出すること。

履修上の注意 /Remarks

必ず、実験の予習を行ってくること。予習内容は、実験で取り扱う反応、操作の原理、操作のフローチャートの作成です。

また、基礎有機化学、有機化学Ⅰ、有機化学Ⅱの内容と関連しているので、講義内容に十分に学習し、実験操作や結果の意味がすぐに理解できるようにしておくこと。

実験ですので、出席して実験を行うことが何よりも必要です。したがって、出席が重視されますので、必ず出席し、実験を行ってください。遅 刻も厳禁です。欠席1回で単位はつきません。遅刻は3回で欠席1回とみなします。

安全性を損なう行為、実験室内で禁止されている行為、他の学生の実験を妨げる行為等を行ったものは、以降、すべての実験を中止させ、成績 を不可とする。

担当者からのメッセージ /Message from the Instructor

有機化学実験は、正しく行えば安全で楽しいものです。しかし、僅かな誤操作が大きな事故につながる危険性を持っています。きっちりと予習をし、安全に実験を行うことを心がけてください。

キーワード /Keywords

Diels-Alder反応、Grignard反応、酸化と還元、化学発光、求核置換反応、求電子置換反応、反応速度論

分析化学

(Analytical Chemistry)

/Instructor

吉塚 和治 / Kazuharu YOSHIZUKA / エネルギー循環化学科(19~)

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O O O O O O

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	分析化学、溶液化学を理解するための基礎知識と計算力を修得する。
技能	専門分野のスキル・	•	環境分析、材料分析に必要な基礎知識と問題解決能力を修得する。
	課題発見・分析・解決力		
思考・判断・表現	プレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

分析化学【化学】 CHM241M

授業の概要 /Course Description

分析化学は、物質をプローブとして物質系からその情報を取り出す方法論に関わる学問であり、自然科学とその応用技術分野を結びつける重要な役割を果たしている。また、環境指標の評価においても不可欠な基礎的学問である。この講義では、物質の分析法の基礎となっている溶液内化学反応として、酸塩基反応、錯形成反応、沈殿生成反応、酸化還元反応について解説するとともに、これを応用した定性的及び定量的な分析法について具体的事例や演習を交えて講義する。

教科書 /Textbooks

『環境分析化学』(第2版) 合原 真・岩永 達人・氏本 菊次郎・脇田 久伸・吉塚 和治・今任 稔彦 (著) 三共出版 2015年 本体2,900円

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

なし

授業計画・内容 /Class schedules and Contents

- 1 溶液化学基礎 化学平衡、活量、イオン強度、活量係数 -
- 2 酸塩基平衡 質量作用則、物質収支、電荷収支 -
- 3 酸塩基平衡 弱酸の平衡 -
- 4 酸塩基平衡 弱塩基の平衡 -
- 5 酸塩基平衡 強酸・強塩基、多塩基酸・多酸塩基の平衡 -
- 6 酸塩基平衡 両性電解質の平衡 -
- 7 演習問題解答会
- 8 前半のまとめ
- 9 錯生成平衡 錯体と錯イオン、錯生成反応 -
- 10 錯生成平衡 逐次生成定数、安定度定数、条件生成定数 -
- 11 沈殿生成平衡 沈殿生成反応、溶解度積 -
- 12 沈殿生成平衡 共通イオン効果、異種イオン効果、pHの影響、錯形成の影響 -
- 13 酸化還元平衡 酸化還元反応、ネルンスト式 -
- 14 酸化還元平衡 電池と起電力、平衡定数 -
- 15 演習問題解答会

成績評価の方法 /Assessment Method

中間試験:40% 期末試験:40%

演習問題解答など日頃の講義への取組:20%

※再試験の受験資格は、2/3以上の出席、中間試験と期末試験の受験、かつ、総合評価で合格する可能性のある者

分析化学

(Analytical Chemistry)

事前・事後学習の内容 /Preparation and Review

講義での学習内容について課題・演習を通して理解を深めること。

中間試験について: 溶液化学基礎、酸塩基平衡について勉強しておくこと。

期末試験について: 錯生成平衡、沈殿生成平衡、酸化還元平衡について勉強しておくこと。

履修上の注意 /Remarks

講義は教科書の他、演習問題などのプリントを配布して行う。

担当者からのメッセージ /Message from the Instructor

環境指標を定性的あるいは定量的に評価するための分析化学について、その基礎となる理論から応用までをしっかり理解して欲しい。

キーワード /Keywords

溶液化学基礎、酸塩基平衡、錯形成平衡、沈殿生成平衡、酸化還元平衡

化学工学

(Chemical Engineering)

担当者名 山本 勝俊 / Katsutoshi YAMAMOTO / エネルギー循環化学科 (19~)

/Instructor

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2018 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 O Ο O O O

対象学科 【必修】 エネルギー循環化学科 【選択必修】 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	流体中の粒子の運動や伝熱に関する基礎知識を修得する。
技能	専門分野のスキル	•	流体中の粒子の運動や伝熱の状態に関する問題解決能力を修得する。
思考・判断・表現	課題発見・分析・解決力		授業で扱う化学ブロセスの状態を、計算した数値に基づいて定量的に判断する能力を修 得する。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
 関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

化学工学 CHM281M

授業の概要 /Course Description

本講義では、化学工学のうち「流体と粒子の分離」、「エネルギーと伝熱」について学習する。これらの操作が実際の工業プロセスでどのように使われているかを意識しながら、講義と演習により授業を進める。本講義の到達目標は、

- ・流体中の粒子の運動方程式を立式し、終末速度を導くことができる
- ・粒子がどのような運動領域にあるかを判断し、正しい数値解を求めることができる
- ・伝熱の様式の違いを理解し、それぞれの様式における伝熱量を正しく計算することができる
- ・熱交換器の熱移動量に関する理論を理解し、伝熱量を正しく計算することができるである。

教科書 /Textbooks

化学工学会編 『基礎化学工学』 培風館 1999年 ¥2,800(税抜)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

化学工学会高等教育教育委員会編 『はじめての化学工学』 丸善 2007年 ¥2,800(税抜)

授業計画・内容 /Class schedules and Contents

- 1 イントロダクション -工業プロセスと化学工学-
- 2 流れとレイノルズ数
- 3 流体内の単一粒子の運動(1) 運動方程式と終末速度 -
- 4 流体内の単一粒子の運動(2) Stokes域、Allen域、Newton域 -
- 5 流体からの粒子の分離(1) 重力分離装置 -
- 6 流体からの粒子の分離(2) ろ過 -
- 7 粒子系の評価 -分布と平均-
- 8 前半の演習
- 9 伝熱(1)-伝導-
- 10 伝熱(2) -対流-
- 11 伝熱(3) -熱抵抗と総括伝熱係数-
- 12 伝熱(4) -放射-
- 13 伝熱(5) -演習-
- 14 熱交換器
- 15 総合演習

成績評価の方法 /Assessment Method

期末試験 100%

化学工学

(Chemical Engineering)

事前・事後学習の内容 /Preparation and Review

前回の講義内容を1時間程度復習し、十分に理解した上で講義に臨むこと。

事前学習用の課題が配布された場合は、必ず授業までにすべて解答し、授業に持参すること。また、事前学習用の映像資料がある場合は、必ず 授業までに視聴し、授業までに練習問題を解いておくこと。

講義中に配布された問題は、講義後にもう一度自分の力で解いてみること(約30分程度必要)。

履修上の注意 /Remarks

毎回、関数電卓必携(スマホ等の代替使用は不可)。

2年第1学期に開講される「基礎化学工学」の内容をよく理解しておくこと。

前年度の成績がFだった受講者が再試験登録する場合、授業に出席する必要はありませんが、もちろん出席してもかまいません。また、履修登録 前に講義担当教員に問い合わせをする必要はありません。

担当者からのメッセージ /Message from the Instructor

化学工学を理解するには授業を聞くだけでは不十分です。授業の前に予習を行い、授業で演習問題を自分の手で解いていく課程で理解が深まりますので、授業には積極的に取り組んでください。

キーワード /Keywords

環境分析実習

(Experiments in Environmental Analysis)

担当者名 吉塚 和治 / Kazuharu YOSHIZUKA / エネルギー循環化学科(19~), 鈴木 拓 / Takuya SUZUKI / エネルギ

/Instructor — 循環化学科(19~)

藍川 昌秀 / Masahide AIKAWA / エネルギー循環化学科(19~)

履修年次 3年次 単位 4単位 学期 1学期 授業形態 実験・実習 クラス /Year /Credits /Semester /Class Format /Class

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解		
技能	専門分野のスキル	•	基本的な実験技術、正確なデータ整理、科学的に正確な解析能力を修得する。
思考・判断・表現	課題発見・分析・解決力		自ら得たデータや解析結果を論理的な思考・判断によって、問題解決法を生み出す応用 力を修得する。
	ブレゼンテーション力		自らの思考・判断のブロセス、結論を適切な方法で表現することができ、客観的な視点 に立って議論する能力を修得する。
	実践力(チャレンジ力)	•	環境・エネルギー問題を解決する意欲と行動力を修得する。
関心・意欲・態度	社会的責任・倫理観	•	化学技術者としての社会的責任感と倫理観を修得する。
	生涯学習力		
	コミュニケーション力	•	他者と協力して、問題解決に向けて行動できる能力を修得する。

環境分析実習【化学】 CHM180M

授業の概要 /Course Description

環境分析の必須項目である一般項目(SS、TOC、ガス分析など)分析から、金属成分および有機物成分の分析(原子吸光分析、ガスクロ分析、 HPLC分析、イオンクロマト分析など)に至るまで、水質および大気の環境指標項目の定性及び定量分析の実習を行う。

教科書 /Textbooks

なし。実験書を配布する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

適宜紹介する。また、実験室に参考書を配備している。

授業計画・内容 /Class schedules and Contents

- 1 実験説明会、安全指導、実験準備、
- 2 データの統計的取扱説明
- 3 重金属の分離分析
- 4 ガスクロマトグラフィー
- 5 浮遊物質量(SS)、n-ヘキサン抽出物質測定
- 6 全有機炭素量(TOC)、全窒素量(TN)測定
- 7 粒子状物質の定量分析
- 8 窒素酸化物(NOx)、硫黄酸化物(SO2)の定量分析
- 9 ガス状・粒子状物質の同時採取と定量分析
- 10 パッシブ試料採取による大気中オゾン・アンモニアの濃度測定
- 11 細孔分布・比表面積測定
- 12 粉末X線分析
- 13 蛍光X線分析
- 14 電子顕微鏡分析
- 15 総括(実験室清掃、後かたづけを含む)

成績評価の方法 /Assessment Method

実験操作の実施:60% レポート:40%

事前・事後学習の内容 /Preparation and Review

事前に実験書の予習を行うこと。実験を始める前までに、実験操作の手順等を実験ノートに書いておくこと。

1単元毎の実験レポートを作成し、次の単元の実験が始まる前までに提出すること。

環境分析実習

(Experiments in Environmental Analysis)

履修上の注意 /Remarks

全ての実験について出席した者で、かつ、全てのレポートを提出した者のみ、成績評価対象となる。

担当者からのメッセージ /Message from the Instructor

環境分析は、水質、大気、土壌、騒音の分析から成り立っている。このうち、環境分析実習では、主として水質、大気について様々な分析手法、機器分析法を用いて行う。これらを習得すれば、環境分析のエキスパートとなることができるので、全ての項目についてしっかり学習して欲しい。

キーワード /Keywords

環境分析、定性分析、定量分析、機器分析、水質分析、大気分析

物理化学演習

(Exercises in Physical Chemistry)

担当者名 朝見 賢二 / Kenji ASAMI / エネルギー循環化学科(19~), 天野 史章 / Fumiaki AMANO / エネルギー循環化

/Instructor 学科(19~)

履修年次 3年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O Ο O O O O

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与	手方針における能力		到達目標
知識・理解	専門分野の知識・理解		
技能	専門分野のスキル	•	物理化学の基本的な原理・原則を理解し、与えられた問題に対して数値、単位等、正確な答えを導出する能力を修得する。
思考・判断・表現	課題発見・分析・解決力	•	演習で取り扱った公式、定理などについて、どのような問題がそれに当てはまるかを発 見、分析し、問題を解決する能力を修得する。
	プレゼンテーション力	•	問題解決の方針や手順を説得力のある方法で表現する能力を身につける。
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

物理化学演習 CHM312M

授業の概要 /Course Description

物理化学は化学の原理を探求する学問であり、化学を学ぶものにとっては必要不可欠なものである。本講義では、物理化学の基礎として極めて 重要な熱力学、統計熱力学、化学平衡、および反応速度についての問題演習をおこなう。

教科書 /Textbooks

アトキンス 物理化学(上、下)第8版 東京化学同人

適宜、プリントを配布

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

なし

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス
- 2 気体の性質
- 3 熱力学第一法則(1) 【仕事、熱、内部エネルギー】
- 4 熱力学第一法則(2) 【エンタルピー】
- 5 熱力学第二法則(1) 【エントロピー】
- 6 熱力学第二法則(2) 【ギブズエネルギー】
- 7 統計熱力学(1) 【分子分配関数】
- 8 統計熱力学(2) 【統計エントロピー】
- 9 相図とクラペイロンの式
- 10 相平衡
- 11 混合の熱力学
- 12 化学平衡
- 13 速度則と速度式
- 14 積分型速度式
- 15 反応速度の温度依存性と半減期

成績評価の方法 /Assessment Method

前半50%(問題演習)

後半50%(問題演習)

事前・事後学習の内容 /Preparation and Review

事前の予習および事後の復習を十分に行うこと。

物理化学演習

(Exercises in Physical Chemistry)

履修上の注意 /Remarks

「化学熱力学」・「化学平衡と反応速度」および「統計熱力学」で学んだ内容についての演習である。 授業には関数電卓を持参すること。

担当者からのメッセージ /Message from the Instructor

物理化学の原理を理解し、それを使って正確な値を導けることが重要です。

キーワード /Keywords

内部エネルギー、エンタルピー、カルノーサイクル、エントロピー、ボルツマン分布、自由エネルギー、化学ポテンシャル、平衡定数、化学平 衡、相平衡、反応速度式、速度定数、アレニウスの式

有機化学演習

(Exercises in Organic Chemistry)

担当者名 秋葉 勇 / Isamu AKIBA / エネルギー循環化学科(19~), 李 丞祐 / Seung-Woo LEE / エネルギー循環化学

/Instructor 科 (19~)

履修年次 3年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O Ο O O O O

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学任	位授与方針における能力		到達目標
知識・理解	専門分野の知識・理解		
技能	専門分野のスキル	•	有機化学の基本的な原理・原則を理解し、与えられた問題に対して正しく解答を導き出す能力を修得する。
思考・判断・表現	課題発見・分析・解決力	•	自ら新しい問題を見つけ出し、論理的な思考に基づいて問題解決のための適切な方法を 考案し、問題を解決する能力を修得する。
	ブレゼンテーション力		問題解決のブロセスや結果を適切な方法で表現することができ、客観的な視点に立って 議論する能力を修得する。
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

有機化学演習 CHM320M

授業の概要 /Course Description

有機化学の演習を通して、基礎有機化学、有機化学Ⅰ、有機化学Ⅱで学んできた内容に関する理解を深める。

教科書 /Textbooks

特になし

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

ボルハルト/ショアー 現代有機化学

授業計画・内容 /Class schedules and Contents

- 1 基礎有機化学演習(1) 構造と性質
- 2 基礎有機化学演習(2) 立体化学
- 3 基礎有機化学演習(3) 置換反応
- 4 基礎有機化学演習(4) 付加反応
- 5 基礎有機化学演習(5) 芳香族と共役
- 6 第1~6回までのまとめ
- 7 有機反応化学演習(1) 求核反応
- 8 有機反応化学演習(2) 求電子反応
- 9 有機反応化学演習(3) 縮合
- 10 有機反応化学演習(4) 特殊な反応
- 11 第7~10回までのまとめ
- 12 有機合成化学演習(1) 炭化水素、アルコール
- 13 有機合成化学演習(2) アルデヒドとケトン
- 14 有機合成化学演習(3) アミン
- 15 総合演習

成績評価の方法 /Assessment Method

毎回の演習問題 50%

レポート 50%

事前・事後学習の内容 /Preparation and Review

基礎有機化学、有機化学Ⅰ、有機化学Ⅱの内容を良く復習しておくこと。

履修上の注意 /Remarks

毎回出される課題を必ず提出すること。

課題・演習を通して当日の授業の内容を反復すること。

有機化学演習

(Exercises in Organic Chemistry)

担当者からのメッセージ /Message from the Instructor

キーワード /Keywords

反応工学

(Chemical Reaction Engineering)

担当者名 西浜 章平 / Syouhei NISHIHAMA / エネルギー循環化学科(19~)

/Instructor

履修年次 3年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance \circ O Ο O O O

対象学科 【必修】 エネルギー循環化学科 【選択必修】 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力		到達目標
知識・理解	専門分野の知識・理解 ●	反応速度や反応率、反応装置の設計法に関する知識を修得する。
技能	専門分野のスキル ●	反応速度や反応装置の解析能力を修得する。
思考・判断・表現	課題発見・分析・解決力 ●	反応操作の最適条件を選定するスキルを修得する。
	ブレゼンテーション力	
関心・意欲・態度	実践力(チャレンジ力)	
	社会的責任・倫理観	
	生涯学習力	
	コミュニケーション力	

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

反応工学 CHM360M

授業の概要 /Course Description

反応工学は、反応装置を合理的に設計し、操作するための工学である。本講義では、反応速度や反応率、反応装置と設計法、反応操作の最適条件の選定について学習する。

教科書 /Textbooks

培風館 「改訂版 反応工学」

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

化学同人 「ベーシック化学工学」

授業計画・内容 /Class schedules and Contents

- 1.化学反応の分類
- 2. 反応器の分類
- 3. 反応速度論の基礎
- 4 . 回分式反応器による反応速度式の実験的解析~積分法(定容系単一反応)
- 5.回分式反応器による反応速度式の実験的解析~積分法(定容系複合反応)
- 6 回分式反応器による反応速度式の実験的解析~積分法(容積変化を伴う反応)・微分法・半減期法
- 7. 気相反応における全圧追跡法
- 8. 前半まとめ
- 9. 回分反応器の設計
- 10. 半回分反応器の設計
- 11.流通式槽型反応器の設計
- 12.回分反応器と流通式槽型反応器の比較
- 13.直列流通式槽型反応器の設計
- 14.管型反応器の設計
- 15. 管型反応器と流通式槽型反応器の比較

成績評価の方法 /Assessment Method

中間テスト 40%

期末テスト 40%

課題の提出など日頃の講義への取組 20%

事前・事後学習の内容 /Preparation and Review

毎回の講義をよく復習し、演習問題をきちんとこなすこと。

履修上の注意 /Remarks

反応工学

(Chemical Reaction Engineering)

担当者からのメッセージ /Message from the Instructor

本講義では、化学工学系の科目の中で、反応工学と呼ばれる分野を学習します。講義を聞くのみでは理解が難しいかもしれませんが、自分で演習問題を繰り返し解くことで、必ず理解できます。

キーワード /Keywords

回分式反応器、流通式槽型反応器、管型反応器、反応速度論

分離工学

(Separation Engineering)

担当者名 西浜 章平 / Syouhei NISHIHAMA / エネルギー循環化学科(19~)

/Instructor

履修年次 3年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 O Ο O O O O

対象学科 【必修】 エネルギー循環化学科 【選択】 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	単位操作に関する知識を修得する。
技能	専門分野のスキル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•	各単位操作の解析能力を修得する。
思考・判断・表現	課題発見・分析・解決力・	•	物質収支と平衡の概念から単位操作の設計が可能であることを理解する。
	ブレゼンテーション力		
関心・意欲・態度	実践力(チャレンジ力)		
	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

分離工学

CHM361M

授業の概要 /Course Description

目的物質を混合物から分離する操作は、化学工業プロセスの中枢をなす重要な操作であり、化学工業のみならず、製造業や環境保全においても不可欠である。この講義では分離法の中でも特に重要な、ガス吸収・蒸留・抽出・吸着について、化学工学的な観点から学習する。

教科書 /Textbooks

化学同人 「ベーシック化学工学」

培風館 「基礎化学工学」

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

朝倉書店 「化学工学通論 | 」

授業計画・内容 /Class schedules and Contents

- 1.物質の分離の原理と方法
- 2. ガス吸収(Henryの法則、二重境膜説)
- 3. ガス吸収(吸収装置、充填塔)
- 4. ガス吸収(吸収塔の高さ)
- 5. 吸着(吸着平衡)
- 6. 吸着(速度、回分吸着)
- 7. 吸着(固定層吸着)
- 8. 前半総括
- 9.蒸留(気液平衡、ラウールの法則)
- 10.蒸留(単蒸留、フラッシュ蒸留)
- 11.蒸留(精留)
- 12.抽出(液液平衡)
- 13.抽出(単抽出、多回抽出)
- 14.抽出(向流多段抽出)
- 15. まとめ

成績評価の方法 /Assessment Method

中間テスト 40%

期末テスト 40%

課題の提出など日頃の講義への取組 20%

事前・事後学習の内容 /Preparation and Review

毎回の講義をよく復習し、演習問題をきちんとこなすこと。

履修上の注意 /Remarks

本講義の理解のためには、基礎化学工学・化学工学を受講していることが望ましい。

分離工学

(Separation Engineering)

担当者からのメッセージ /Message from the Instructor

本講義では、化学工学系の科目の中で、分離工学と呼ばれる分野を学習します。講義を聞くのみでは理解が難しいかもしれませんが、自分で演習問題を繰り返し解くことで、必ず理解できます。

キーワード /Keywords

ガス吸収、吸着、蒸留、抽出

2019

大気浄化工学

(Air Pollution Control Technology)

担当者名 藍川 昌秀 / Masahide AIKAWA / エネルギー循環化学科(19~)

/Instructor

 履修年次
 3年次
 単位
 2単位
 学期
 1学期
 授業形態
 講義
 クラス

 /Year
 /Credits
 /Semester
 /Class Format
 /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

対象学科 【選択】 エネルギー循環化学科, 環境生命工学科

/Department

/Year of School Entrance

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力		到達目標		
知識・理解	専門分野の知識・理解	•	大気汚染防止についての幅広い知識を修得する。	
技能	専門分野のスキル			
思考・判断・表現	課題発見・分析・解決力			
	プレゼンテーション力			
関心・意欲・態度	実践力(チャレンジ力)	•	大気環境の汚染を管理・防止する意欲を身につける。	
	社会的責任・倫理観			
	生涯学習力			
	コミュニケーション力			

O

O

O

O

O

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

大気浄化工学

ENV332M

授業の概要 /Course Description

近年、微小粒子状物質(PM2.5)による大気汚染や大気中の温室効果ガスの濃度上昇による地球温暖化など私たちを取り巻く大気に関する環境問題が大きな問題となっています。この講義では、大気環境を支配する要因(大気汚染物質や温室効果ガスの発生、移流・拡散、反応、沈着))や大気汚染を抑制するための汚染防止技術と法体系についての理解を目指します。

教科書 /Textbooks

特になし。随時、必要に応じて資料を配布する。

参考書(図書館蔵書には 〇) /References(Available in the library: 〇)

無

授業計画・内容 /Class schedules and Contents

- 1. 大気科学の基礎(単位(混合比・数密度))
- 2. 大気科学の基礎(単位(質量濃度・分圧))
- 3. 大気の質量と大気圧
- 4.大気の構造と輸送(水平輸送)
- 5 大気の輸送(鉛直輸送)
- 6 . 大気の環境基準
- 7. 大気環境(汚染)の現況
- 8. 大気汚染抑制のための法体系(法体系全般)
- 9 大気汚染抑制のための法体系(個別法)
- 10.環境大気の測定(大気汚染常時監視)
- 11.燃料と燃焼I(燃焼の基礎)
- 12.燃料と燃焼||(気体燃料の燃焼計算)
- 13.燃料と燃焼Ⅲ(液体・固体燃料の燃焼計算)
- 14.ガス成分の抑制(脱硫・脱硝と燃焼ガスの測定)
- 15.粒子成分の抑制(採取法・生成と動態・分離と測定)

成績評価の方法 /Assessment Method

期末試験:100%

事前・事後学習の内容 /Preparation and Review

事前に前回授業までの復習をするとともに、授業後は演習課題を再度反復して下さい。

履修上の注意 /Remarks

授業の中で20-30分程度の演習をします。

大気浄化工学

(Air Pollution Control Technology)

担当者からのメッセージ /Message from the Instructor

講義は、聴くだけになりがちです。しかし、聴くだけの講義ではなく、そこから何かを感じ、自主的に考える姿勢を持って下さい。自ら考える 姿勢は社会に出てから必ず役立ちます。

キーワード /Keywords

大気環境、大気汚染物質、大気汚染防止、測定技術、法体系

構造化学

(Structural Chemistry)

I= . I . . 4. . 4.

黎 暁紅 / Xiaohong LI / エネルギー循環化学科(19~)

/Instructor

履修年次3年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class Format

対象入学年度 /Year of School Entrance
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019

 C
 O
 O
 O
 O
 O
 O
 O

対象学科 【選択】 環境生命工学科 【選択必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	物質の構成単位である微視的な粒子の世界を支配する法則を修得する。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力	•	物質の構造や反応など、化学の基礎的な問題を理解する能力を身につける。
	ブレゼンテーション力		
関心・意欲・態度	実践力(チャレンジ力)		
	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

構造化学 CHM310M

授業の概要 /Course Description

物質の構成単位である微視的粒子(原子・分子)について、量子化学の観点から解説する。微視的な粒子の世界を支配する法則について学び、物質の構造や反応といった、化学基礎となる問題を理解する能力を養う。

教科書 /Textbooks

物理化学、Peter Atkins・Julio de Paula著、東京化学同人

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

物理化学、D.A.McQ u arrie、J.D.S i m o n、東京化学同人

授業計画・内容 /Class schedules and Contents

- 1量子力学の起源
- 2 古典力学
- 3 黒体放射
- 4原子スペクトル
- 5 光電効果
- 6ドブローイ物質波
- 7不確定原理
- 8波動関数
- 9演算子
- 10固有値と固有関数
- 11シュレーディンガー方程式
- 12量子力学の基本原理
- 13箱の中の粒子
- 14水素原子の波動関数
- 15演習

成績評価の方法 /Assessment Method

授業への積極的な参加:20%

最終試験:80%

事前・事後学習の内容 /Preparation and Review

教科書

構造化学

(Structural Chemistry)

履修上の注意 /Remarks

電卓を持参すること。

微視的粒子の運動は、一般の物理学で用いられるニュートン力学の法則に従わず、量子力学の法則に従う。本科目を勉強するとき、ニュートン 力学の概念を捨て、量子力学の概念を受け入れることが重要である。

自主学習を行い、当日の授業の内容を反復すること。

担当者からのメッセージ /Message from the Instructor

微視的粒子の世界は我々が日常暮らしている世界(巨視的世界)とはまったく異なっている。このように物質の微視的世界では、量子の概念を 用いて物質中の電子のエネルギー準位、元素の周期表を統一的に説明できる

キーワード /Keywords

先端材料工学

(Advanced Materials)

担当者名 李 丞祐 / Seung-Woo LEE / エネルギー循環化学科(19~), 今井 裕之 / Hiroyuki IMAI / エネルギー循環化

/Instructor 学科 (19~)

履修年次 3年次 単位 2単位 学期 1学期 授業形態 講義 クラス Year /Credits /Semester /Class Format /Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O O Ο O O O

対象学科 【選択】 環境生命工学科 【選択必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	先端材料の構造・機能制御に関する基礎的専門的知識を修得する。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力	•	ナノレベルでの材料の構造と特性を理解するための分析・評価法を修得する。
	ブレゼンテーション力		
関心・意欲・態度	実践力(チャレンジ力)	•	環境、エネルギー、医療分野などに関連した応用事例を通して、先端材料開発の近年の取り組みを間接的に経験する。
	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

先端材料工学 CHM350M

授業の概要 /Course Description

大きな産業発展は材料に基づくことが多く、これまで様々な材料の開発により社会および生活環境が大きく変化している。その中でナノテクノ ロジーは、バイオ技術、情報通信技術に並んで、地球の未来を左右する環境・エネルギー問題と深く関わる核心技術である。本講義では、ナノ テクノロジーの基盤となるナノ素材の合成、物性などについて解説する。

教科書 /Textbooks

特に指定しない

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

- ○『革新的な多孔質材料』 日本化学会編 化学同人 2010年 本体3,800円
- ○『金属および半導体ナノ粒子の科学』 日本化学会編 化学同人 2012年 本体3,800円
- ○『新しい触媒化学』 菊地英一・多田旭男・服部英・瀬川幸一・射水雄三 著 三共出版 2013年 本体2,800円

授業計画・内容 /Class schedules and Contents

- 1 ガイダンスとイントロダクション
- 2 化学技術の歴史
- 3 ナノ粒子触媒
- 4 グリーンケミストリー
- 5 石油化学
- 6 ゼオライトの構造と物性
- 7 ゼオライトの合成と応用
- 8 前半総括
- 9 材料の構造と機能:ナノ構造の制御 |
- 10 材料の構造と機能:ナノ構造の制御Ⅱ
- 11 材料の構造と機能:分子機能の制御 I
- 12 材料の構造と機能:分子機能の制御 II
- 13 自己組織化ナノ材料 I
- 14 自己組織化ナノ材料 II
- 15 後半総括

成績評価の方法 /Assessment Method

中間試験 50% 期末試験 50%

事前・事後学習の内容 /Preparation and Review

自主学習を行い、授業の内容を反復して、理解を深めること。

先端材料工学

(Advanced Materials)

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

キーワード /Keywords

ナノテクノロジー 多孔質材料 グリーンケミストリー 自己組織化

機器分析

(Instrumental Analysis)

担当者名 鈴木 拓 / Takuya SUZUKI / エネルギー循環化学科(19~)

/Instructor

履修年次3年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class Format

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance Ο Ο O O Ο

対象学科 【選択】 環境生命工学科 【選択必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	X線/電子線をはじめとした大型機器分析の原理を理解する。
技能	専門分野のスキル	•	大型機器分析における基礎的な計測法を修得する。
思考・判断・表現	課題発見・分析・解決力	•	大型機器分析における主要な誤差要因を理解するとともに、適切な前処理法を選択でき るようになる。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
 関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

機器分析 CHM342M

授業の概要 /Course Description

環境情報把握には、微量のサンプルを多数、高速分析する必要があり、分析機器を駆使する必要はますます高まっている。本講義では計測分析センターに設置してある分析機器群を中心に、各種分析機器の原理を解説し、前処理を含め分析技法の概略を理解することを目的とする。

教科書 /Textbooks

機器分析のてびき 化学同人 泉美治他 監修

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

粉末X線解析の実際 中井 泉 (編集), 泉 富士夫 (編集) 朝倉書店 ベーシック機器分析化学 日本分析化学会 近畿支部編 化学同人 走査プローブ顕微鏡と局所分光 重川秀実、坂田亮、河津璋 裳華房 他

授業計画・内容 /Class schedules and Contents

- 1 イントロダクション
- 2 蛍光X線
- 3 単結晶X線回折
- 4 粉末X線回折
- 5 粉末X線回折II
- 6 粉末X線回折Ⅲ
- 7 電子顕微鏡(TEM)
- 8. 電子顕微鏡II(SEM)
- 9. AFM/STM, ESCA
- 10. FT-IRとラマン分光、UV-VIS
- 11. 熱重量分析(TG-DTA / DSC)
- 12 金属分析/ICP、AAS
- 13 NMR
- 14 比表面積測定と粒子径分析
- 15 電気化学測定法の基礎

成績評価の方法 /Assessment Method

レポート 100%

事前・事後学習の内容 /Preparation and Review

実習・実験などで使用する機器群の解説が含まれる。実際に使用する機器について、関連する教科書部分をチェックし、復習を行うこと。

機器分析

(Instrumental Analysis)

履修上の注意 /Remarks

授業で使用するpptファイルはひびきのe-leaningシステム上または講座HPにて配付するので、復習などで必要であれば各自ダウンロードすること。

担当者からのメッセージ /Message from the Instructor

卒業研究などで必要となる各種分析機器の原理、前処理、測定限界、精度などについて講義します。

環境分析化学

(Environmental Analysis)

門上 希和夫 / Kiwao KADOKAMI / 環境技術研究所

/Instructor

履修年次 3年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance O O Ο O O O

対象学科 【選択】 環境生命工学科 【選択必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	環境分析に関わる基礎的・専門的な知識を理解する。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力	•	環境分析をツールとして、環境汚染の早期発見、原因究明と解決に科学的な視点から取り組む。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力	•	環境の状態を科学的に把握し、その保全に貢献する意欲を身につける。
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

環境分析化学

CHM341M

授業の概要 /Course Description

本教科では,分析化学を履修した学生を対象にして,法律に定められた分析法(公定法)を中心に環境汚染物質の分析法を教育する。環境試料 中の様々な汚染物質の分析に使用される分析機器の原理,同じ物質でも大気,水質,土壌など試料毎に異なる前処理法を具体的に学ぶ。また ,信頼できる分析値を得るために必要な分析精度管理を理解し,正しい測定値を得るために必要な知識だけでなく,分析依頼者として分析値を 評価する知識とノウハウを習得する。

教科書 /Textbooks

授業時にテキストや参考資料を配付。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

- 1) 環境の化学分析、日本分析化学会北海道支部、三共出版、1998
- 2) 環境と安全の科学 演習と実習,及川紀久雄他,三共出版,2007
- 3) 環境分析技術手法,日本環境測定分析協会,しらかば出版,2001
- 4) Environmental Chemical Analysis, B.B.Kebbekus, S. Mitra, Chapman & Hall/CRC, 1998

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス,基準項目と分析法 (調査の目的・意義,調査計画,調査項目,調査地点,調査時期)
- 2 調査目的,計画とサンプリング (準備,器具,洗浄法,容器,採取・運搬・保存)
- 3 紫外・可視吸光光度法,原子吸光光度法
- クロマトグラフィー (GC) クロマトグラフィー (HPLC, IC) 5
- 6 質量分析法 (GC/MS)
- 質量分析法 (LC/MS, ICP-MS) 7
- 8 前半のまとめ・中間試験
- 9 水質一般項目 (COD, BOD, SS, T-N, T-P, ECなど)
- 10 水質の有害項目前処理 (重金属, VOC, CNなど)
- 11 水質の有害項目前処理(半揮発性化学物質)
- 12 大気の有害項目前処理
- 13 土壌,底質,生物の有害項目前処理
- 14 分析精度管理
- 15 検出値の評価・まとめ

成績評価の方法 /Assessment Method

中間試験: 40%, 期末試験: 60%

環境分析化学

(Environmental Analysis)

事前・事後学習の内容 /Preparation and Review

配布テキストを予習することで,授業内容の理解が一層深まる。また,しっかりと復習することにより,好成績が得られるだけで無く,確実に 知識や考え方が身につく。

履修上の注意 /Remarks

夏季休暇中に集中講義で実施する。

中間試験: 前半の授業内容から出題する。期末試験: 全15回の授業内容から出題する。 集中して聴講して重要な内容をノートに取ること。配布したテキストや資料を用いて予習・復習を欠かさずに行うこと。 参加型授業・考える授業を目指し,授業中に質問するので,自分の考えを必ず発表すること。

担当者からのメッセージ /Message from the Instructor

環境質を評価するための種々の分析について,実際に使用されている方法を中心に講義する。環境分野に就職を希望する学生だけでなく,環境 測定値を評価をするために必要不可欠な知識である。履修者はしっかりと勉強してほしい。

資源循環工学

(Sustainable Resource Engineering)

担当者名 安井 英斉 / Hidenari YASUI / エネルギー循環化学科(19~), 大矢 仁史 / Hitoshi OYA / エネルギー循環化

/Instructor 学科 (19~)

履修年次 3年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 /Year of School Entrance O O O O O Ο

対象学科 【選択】 環境生命工学科 【選択必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	有機物・無機物の処理における工学的原理を数式や化学の視点で理解する。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力		
心传 "中四" 众坑	プレゼンテーション力		
	実践力(チャレンジ力)	•	物質収支や反応速度に基づいて事象を整理するセンスを身につける。
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力	•	排水・廃棄物の処理と資源化を科学的かつ論理的に考える習慣を身につける。
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

資源循環工学

ENV333M

授業の概要 /Course Description

豊かで住みよい生活を営み、様々な生産活動や社会活動を持続可能なものとするためには、環境への負荷を最小にして、有限の資源を最大限に 活用する資源循環型社会を形成していくことが必要となる。このことを技術面から理解することを目標に、排水と有機性廃棄物の処理システム ならびに金属とプラスチック廃棄物のリサイクルシステムについて、原理と基本的考え方を学ぶ。

排水と有機性廃棄物の分野では、私たちの社会で最も広く使われている生物学的処理システムに特に焦点を当てる。また、金属とプラスチック 廃棄物のリサイクルにおいては、最も重要な技術である粉砕プロセスと分離プロセスを中心に説明する。

教科書 /Textbooks

特に指定せず、必要に応じて講義の都度資料を配付する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

講義中に適宜指示する。

授業計画・内容 /Class schedules and Contents

- 1 生物学的処理システムの化学1(窒素除去)
- 2 生物学的処理システムの化学2(有機物除去)
- 3 汚濁物質(有機物・栄養塩類)を分解する微生物の種類と処理プロセス(リン除去)
- 4 微生物の増殖と汚濁物質分解の関係(CODの考え方、汚泥の生成)
- 5 生物学的排水処理システムの反応1(ケモスタット)
- 6 生物学的排水処理システムの反応2(活性汚泥法)
- 7 排水・有機性廃棄物の資源化技術(メタン発酵システム)
- 8 排水処理システムの反応計算(演習)
- 9 金属・プラスチック類のリサイクル技術概要
- 10 金属・プラスチック類のリサイクルに関する考え方
- 11 様々な金属・プラスチック類のリサイクル技術1(粉砕)
- 12 様々な金属・プラスチック類のリサイクル技術2(物理的分離1)
- 13 様々な金属・プラスチック類のリサイクル技術3(物理的分離2)
- 14 様々な金属・プラスチック類のリサイクル技術4(物理化学的分離)
- 15 様々な金属・プラスチック類のリサイクル技術5(化学的分離)

成績評価の方法 /Assessment Method

レポート・演習 50%

試験 50%

事前・事後学習の内容 /Preparation and Review

復習: レポートの作成や演習の解き方等を活用し、各内容を充分に理解すること。

予習:授業計画で示したキーワードを元に、関連項目を図書館の書籍や文献検索等で調べておくこと。

資源循環工学

(Sustainable Resource Engineering)

履修上の注意 /Remarks

講義の要点をノートに必ずまとめること。また、これによって授業で学習した数式・反応等を理解すること。 適宜、演習による理解度評価を行う。

担当者からのメッセージ /Message from the Instructor

資源のリサイクルに関連する科目を予め受講しておくことが望ましい。

キーワード /Keywords

水処理 資源回収 化学工学

エネルギー循環化学実習

(Experiments in Chemical Engineering, Energy and Environments)

担当者名 西浜 章平 / Syouhei NISHIHAMA / エネルギー循環化学科(19~), 大矢 仁史 / Hitoshi OYA / エネルギー循

/Instructor 環化学科 (19~)

安井 英斉 / Hidenari YASUI / エネルギー循環化学科(19~)

履修年次 3年次 単位 4単位 学期 2学期 授業形態 実験・実習 クラス /Year /Credits /Semester /Class Format /Class

 対象入学年度
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019

 Year of School Entrance
 Image: Contract of School Entract of

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解		
技能	専門分野のスキル	•	実験技術、データ整理・解析及び報告書作成に必要なスキルを総合的に修得する。
思考・判断・表現	課題発見・分析・解決力	•	実験結果から問題点を見つけ、その原因究明と解決力を身につける。
	ブレゼンテーション力	•	実験結果と考察をレポートに論理的かつ簡潔にまとめる力を身につける。
	実践力(チャレンジ力)	•	実験計画を立て、計画通りに進めていく実行力を身につける。
関心・意欲・態度	社会的責任・倫理観	•	実験データの整理や解析を通じて化学技術者として必要な倫理観を身につける。
INTO TOTAL TOTAL	生涯学習力		
	コミュニケーション力	•	チームで実験課題に取り組むことで、チームブレーに必要な力を身につける。

エネルギー循環化学実習 CHM380M

授業の概要 /Course Description

化学工学に関する各種の実験を通じて、その基本原理および解析方法を修得し、化学プロセスの設計の基となる化学工学的手法および体系を理解することを目標とする。

教科書 /Textbooks

独自に作成した実験書を配布する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

特に指定しない。

授業計画・内容 /Class schedules and Contents

- 1.ガイダンス
- 2. ふるい分けによる粉体の粒子径分布測定
- 3. 直管の圧力損失
- 4. 粘度測定・密度測定
- 5 . Kozeny-Carman
- 6 . 三成分溶解平衡
- 7. 金属イオンのイオン交換分離
- 8.ゼオライトによる水の軟水化
- 9.蒸留
- 10.物質移動
- 11.酸素吸収速度
- 12. PFRによる気相触媒反応 1週目
- 13. PFRによる気相触媒反応 2週目
- 14. 再実験
- 15.総括

成績評価の方法 /Assessment Method

実験操作の実施 60%

レポート 40%

事前・事後学習の内容 /Preparation and Review

事前に実験書の予習を行うこと。実験を始める前までに、実験操作の手順等を実験ノートに書いておくこと。

1単元毎の実験レポートを作成し、次の単元の実験が始まる前までに提出すること。

履修上の注意 /Remarks

全ての実験について出席した者で、かつ、全てのレポートを提出した者のみ、成績評価対象となる。

エネルギー循環化学実習

(Experiments in Chemical Engineering, Energy and Environments)

担当者からのメッセージ /Message from the Instructor

実験を通して、化学工学系の講義にて学んできた内容に対する理解を深めてください。

無機・分析化学演習

(Exercises in Inorganic Chemistry and Analytical Chemistry)

担当者名 今井 裕之 / Hiroyuki IMAI / エネルギー循環化学科 (19~), 吉塚 和治 / Kazuharu YOSHIZUKA / エネルギ

/Instructor —循環化学科(19~)

履修年次3年次単位1単位学期2学期授業形態演習クラス/Year/Credits/Semester/Class Format/Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O 0 O O O O

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	化学に関する理論や基礎知識を化学工業と関連づけて理解する能力を修得する。
技能	専門分野のスキル	•	化学に関する理論に基づく正確なデータ整理、科学的に正確な解析能力を修得する。
思考・判断・表現	課題発見・分析・解決力	•	データや解析結果を論理的な思考・判断によって、問題解決法を生み出す応用力を修得する。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

無機・分析化学演習 CHM331M

授業の概要 /Course Description

無機化学の演習では、原子中の電子の配置に基づいた物質の特性、ならびに電子の状態に基づいた化学結合論について、基礎的な演習を通して 理解を深める。

分析化学の演習では、分析化学の講義で取り扱った酸塩基平衡、錯生成平衡、沈殿生成平衡および酸化還元平衡に関する計算問題を解き、理解 を深める。

両分野の演習では、高度な内容の演習も取り扱うことで、基礎的な理解を応用に繋げる能力を段階的に養っていく。

教科書 /Textbooks

『環境分析化学』 合原 真・岩永 達人・氏本 菊次郎・脇田 久伸・吉塚 和治・今任 稔彦 (著) 三共出版 2004年 本体2,900円

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

○『無機・分析化学演習』 竹田 満洲雄・棚瀬 知明・高橋 正・北沢 孝史 (著) 東京化学同人 1998年 本体3,800円

授業計画・内容 /Class schedules and Contents

- 1. 原子の構造 【軌道と電子配置】
- 2. 原子の構造 【電子移動】
- 3. 分子の構造 【平面構造】
- 4. 分子の構造 【立体構造】
- 5. 分子の構造 【電子軌道】
- 6. 分子の構造 【エネルギー準位】
- 7. 配位化学
- 8. 酸と塩基
- 9. 前半総括
- 10. 酸塩基平衡 【酸と塩基の中和滴定その1】
- 11. 酸塩基平衡 【酸と塩基の中和滴定その2】
- 12. 錯生成平衡 【金属イオンのキレート滴定】
- 13. 沈殿生成平衡【金属イオンの沈殿滴定】
- 14. 酸化還元平衡【酸化還元滴定】
- 15. 後半の総括

成績評価の方法 /Assessment Method

中間試験:40% 期末試験:40%

演習問題解答など日頃の講義への取組:20%

無機・分析化学演習

(Exercises in Inorganic Chemistry and Analytical Chemistry)

事前・事後学習の内容 /Preparation and Review

事前に無機化学および分析化学での学習内容を反復しておき、課題・演習を通して当日の授業の内容を反復すること。

中間試験について:無機化学分野についてしっかり勉強しておくこと。

期末試験について:酸塩基平衡、錯生成平衡、沈殿生成平衡および酸化還元平衡について、しっかり勉強しておくこと。

履修上の注意 /Remarks

講義は教科書の他、演習問題やデータ集などのプリントを配布して行う。

担当者からのメッセージ /Message from the Instructor

無機化学と分析化学の基礎理論と応用分野について、各単元の数値計算などの演習問題を解きながら理解を深めてほしい。

キーワード /Keywords

原子構造、化学結合、溶液化学基礎、酸塩基平衡、錯形成平衡、酸化還元平衡

化学工学演習

(Exercises in Chemical Engineering)

担当者名 大矢 仁史 / Hitoshi OYA / エネルギー循環化学科(19~), 山本 勝俊 / Katsutoshi YAMAMOTO / エネルギー

/Instructor 循環化学科(19~)

履修年次 3年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O O O O O O

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	専門分野の知識・理解	•	工学的な知識を修得する。		
技能	専門分野のスキル	•	工学的な知識を使い、工学的な計算技能を修得する。		
思考・判断・表現	課題発見・分析・解決力	•	与えられた課題に対する解決力の向上を行う。		
10.9 1101 200	ブレゼンテーション力				
	実践力(チャレンジ力)				
関心・意欲・態度	社会的責任・倫理観				
	生涯学習力				
	コミュニケーション力				

化学工学演習 CHM364M

授業の概要 /Course Description

これまでに学んできた化学工学の基本的な学問領域について、演習や実習を行うことにより一層理解を深める。

教科書 /Textbooks

特に指定せず、必要に応じて講義の都度資料を配付する

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

講義中に適宜指示する

授業計画・内容 /Class schedules and Contents

- 1 事業で使われる化学工学実習1(環境企業事業内容見学)
- 2 事業で使われる化学工学実習2(素材企業事業内容見学)
- 3 事業で使われる化学工学実習3(組み立て企業事業内容見学)
- 4 事業で使われる化学工学実習4(環境企業研究内容見学)
- 5 事業で使われる化学工学実習5(素材企業研究内容見学)
- 6 事業で使われる化学工学実習6(組み立て企業研究内容見学)
- 7 化学工学の実際
- 8 粒子の沈降
- 9 数値計算法
- 10 円管内の流れ
- 11 充填層の流れと沪過
- 12 気液平衡
- 13 蒸溜
- 14 伝導・対流
- 15 熱交換器

成績評価の方法 /Assessment Method

レポート 40%

毎回の演習 60%

・ (第9講~第15講までで課された演習問題はすべて解答し、提出すること)

事前・事後学習の内容 /Preparation and Review

企業訪問に関しては、その前にホームページ等で事業内容について予習を行うこと。各演習に臨むにあたっては必ず該当分野を今までの教科書 等で確認し、内容の理解に努めておくこと

化学工学演習

(Exercises in Chemical Engineering)

履修上の注意 /Remarks

9月中に企業訪問(1日全日)を行い、その内容をレポートにまとめる課題を課す。(3年生には7月末に説明を行うが、再履修生は必ず担当者 に相談を行うこと)

講義中に配付した資料等により演習を行う。2年生までに履修した内容を復習しておくことが望ましい。

演習による理解度評価を行う。

事前学習用の課題が配布された場合は、必ず授業までにすべて解答し、授業に持参すること。また、事前学習用の映像資料がある場合は、必ず 授業までに視聴し、授業までに練習問題を解いておくこと。授業中に自分の力で解けなかった問題は、授業後の学習で自力で解いてみること。

担当者からのメッセージ /Message from the Instructor

電気化学

(Electrochemistry)

担当者名 吉塚 和治 / Kazuharu YOSHIZUKA / エネルギー循環化学科(19~), 天野 史章 / Fumiaki AMANO / エネル

/Instructor ギー循環化学科 (19~)

履修年次 3年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O Ο O O

対象学科 【選択】 環境生命工学科 【選択必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	化学に関する理論や基礎知識を化学工業と関連づけて理解する能力を修得する。
技能	専門分野のスキル	•	化学に関する理論に基づく正確なデータ整理、科学的に正確な解析能力を修得する。
思考・判断・表現	課題発見・分析・解決力		
心传"中断"致现	ブレゼンテーション力		
	実践力(チャレンジ力)		
 関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

電気化学 CHM311M

授業の概要 /Course Description

酸化還元やイオンの移動現象に関連する電気化学反応は、電池やメッキなどの日常生活にも関連が深いが、化学分析法としても広く利用されている。この講義では、溶液中の酸化還元反応について学習し、化学分析や電池反応を行う上で重要な電気化学反応の基礎について習得する。また、ポテンショメトリー、pH電極、イオンセンサなど電気化学分析法や様々な電池、電気化学の応用技術について講義する。

教科書 /Textbooks

『環境分析化学』(第2版) 合原 真・岩永 達人・氏本 菊次郎・脇田 久伸・吉塚 和治・今任 稔彦 (著) 三共出版 2015年 本体2,900円

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

『基礎からわかる電気化学』(第2版) 泉生一郎・石川正司・片倉勝己・青井芳史・長尾恭孝 (著) 森北出版 2015年 本体2,800円

授業計画・内容 /Class schedules and Contents

- 1 電気化学概論
- 2 酸化還元反応 電池の構成と起電力・ネルンスト式 -
- 3 酸化還元平衡 自由エネルギーと平衡定数 -
- 4 酸化還元反応・電位・平衡の演習
- 5 電気化学分析法 原理、種類 -
- 6 電気化学分析法 構成、応答特性 -
- 7 電気化学分析法の演習
- 8 前半の総合試験
- 9 電極と電解液界面の構造
- 10 電極反応の速度
- 11 二次電池
- 12 燃料電池
- 13 光電気化学
- 14 太陽電池・光触媒
- 15 後半の総合試験

成績評価の方法 /Assessment Method

前半の総合試験:40%、後半の総合試験:40%、演習問題解答:20%。

※再試験は、「前半と後半の総合試験受験者」かつ「出席が2/3以上の者」かつ「合格の可能性がある者」を対象者(F評価)とする。

事前・事後学習の内容 /Preparation and Review

講義での学習内容について課題・演習を通して理解を深めること。

前半の総合試験について:酸化還元反応・電位・平衡や電気化学分析法に関する演習問題を含めて、電気化学の基礎と応用について、しっかり 勉強しておくこと。

後半の総合試験試験について:電気二重層、電流と電位の関係、二次電池、燃料電池、光電気化学について、しっかり勉強しておくこと。

電気化学

(Electrochemistry)

履修上の注意 /Remarks

講義は教科書の他、演習問題やデータ集などのプリントを配布して行う。

担当者からのメッセージ /Message from the Instructor

河川や廃水中などの環境モニタリングにおいて、特定の無機イオンや有機物を直接分析する場合に用いられるのがポテンショメトリーやアンンペロメトリーなどの電気化学分析法である。また、現在最も注目されている電気化学の応用技術にリチウムイオン二次電池や燃料電池、太陽電池などがある。このような種々の電気化学の基礎となる酸化還元反応・電位の理論から具体的な応用例までをしっかり理解して欲しい。

キーワード /Keywords

酸化還元反応、酸化還元電位、酸化還元平衡、電気化学分析法、電気二重層、電極反応、二次電池、燃料電池、半導体電極、光触媒、電気めっき

触媒工学

(Catalysis Engineering)

担当者名 天野 史章 / Fumiaki AMANO / エネルギー循環化学科(19~)

/Instructor

履修年次 3年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

 対象入学年度
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015

 Year of School Entrance
 0
 0
 0
 0

対象学科 【選択必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	物質変換や化学工業の理解に必要な触媒工学の基礎知識を修得する。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力	•	環境・エネルギー問題の本質を理解し、問題解決法を生み出すために、触媒工学の知識 が適用可能であることを発見する。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

触媒工学 CHM362M

2018

O

2019

2016

O

2017

O

授業の概要 /Course Description

【概要】

触媒は化学工業において必要不可欠なものです。環境改善やグリーンケミストリーなどにも触媒技術は使用されており、その重要性はますます 増大しています。この授業では、固体表面や金属錯体による触媒作用の原理について、触媒化学の基礎を学びます。また、化学原料・化学品の 生産プロセスと触媒との関係や、それぞれの反応プロセスにおける触媒の役割について、触媒工学的な知識を身につけます。

【学習目標】

- ・触媒作用のメカニズムを理解する。
- ・実用触媒の考え方を知り、工業プロセスにおいて触媒に求められる役割を説明できる。
- ・代表的な触媒反応プロセスを知り、各プロセスにおける触媒の機能を説明できる。
- ・不均一系触媒反応の速度式を導出できる。

教科書 /Textbooks

新しい触媒化学 新版 (菊地英一・多田旭男・服部英・瀬川幸一・射水雄三 著)三共出版 2,800円+税

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

- 触媒化学 第2版 (御園生誠·斉藤泰和 著) 丸善出版 3,000円+税
- 触媒化学 (化学マスター講座) (江口浩一 編著) 丸善出版 3,400円+税

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス、触媒化学の概要
- 2 分子の活性化と触媒機能
- 3 プロセス開発と触媒
- 4 問題演習 1
- 5 グリーンケミストリーと触媒プロセス
- 6 エネルギーと化学原料製造1 【石油の利用】
- 7 エネルギーと化学原料製造2 【天然ガスの利用】
- 8 問題演習2
- 9 不均一系固体触媒反応 1 【水素化、酸化反応】
- 10 不均一系固体触媒反応 2 【酸触媒反応】
- 11 有機金属化合物の基本反応
- 12 均一系触媒反応プロセス
- 13 問題演習3
- 14 吸着
- 15 不均一系触媒反応速度式

触媒工学

(Catalysis Engineering)

成績評価の方法 /Assessment Method

期末試験: 30% 問題演習: 70%

事前・事後学習の内容 /Preparation and Review

熱力学、反応速度論、および有機化学の基礎知識が必要です。

自主学習を行い、当日の授業の内容を反復すること。

履修上の注意 /Remarks

教科書「新しい触媒化学(三共出版)」を持参すること。

担当者からのメッセージ /Message from the Instructor

触媒に対して興味をもってもらうことを第一に考えて講義を行います。

化学工業における資源の流れや触媒の役割を理解することは、触媒化学分野で研究開発をおこなうために必要です。

キーワード /Keywords

触媒機能、石油化学工業、石油精製、有機工業化学、化学品製造、固体触媒、錯体触媒、環境触媒

エネルギー化学プロセス

(Processes of Energy Chemistry)

担当者名

黎 暁紅 / Xiaohong LI / エネルギー循環化学科 (19~)

/Instructor

履修年次 3年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2018 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 0 О O O O O

対象学科 【選択必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授	与方針における能力		到達目標
知識・理解	専門分野の知識・理解	•	化学ブロセス工学の知識を修得し、産業構造としての「環境」とエネルギー消費量の関係を理解する。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力	•	化学変換とエネルギー変換を環境問題の観点から理解し、問題解決する能力を身につけ る。
	プレゼンテーション力		
	実践力(チャレンジ力)		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力	•	資源・環境・エネルギー問題に関心を持ち、生涯学習意欲の足掛かりを得る。
	コミュニケーション力		

エネルギー化学プロセス CHM363M

授業の概要 /Course Description

産業構造としての「環境」をエネルギー消費量との関係で理解する。また、化学変換とエネルギー変換は環境問題の一つの解答であるという観 点から、工業化学の上での具体的問題を取り上げることで、化学プロセス工学を実用学として演習的に理解させる。

教科書 /Textbooks

配布資料

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

配布資料

授業計画・内容 /Class schedules and Contents

- 1. ガイダンス
- 2. 化学プロセスの3因子
- 3.物質収支
- 4 . エネルギー収支
- 5. 化学プロセスの基本コンセプト
- 6. 石油化学プロセス
- 7.接触分解、水素化分解
- 8. 低級オレフィン合成
- 9.石炭からの液体燃料を合成するシステム
- 10.天然ガス化学プロセス
- 11.リフォーミング
- 12.メタノール合成
- 13.フィッシャー・ トロプシュ合成
- 14.バイオマスエネルギー
- 15.期末演習

成績評価の方法 /Assessment Method

授業への積極的な参加:20%

最終試験:80%

事前・事後学習の内容 /Preparation and Review

練習問題プリント

エネルギー化学プロセス

(Processes of Energy Chemistry)

履修上の注意 /Remarks

授業内容を予測して関係する物質名・反応を調べておくこと。

担当者からのメッセージ /Message from the Instructor

高分子化学

(Polymer Chemistry)

担当者名 秋葉 勇 / Isamu AKIBA / エネルギー循環化学科 (19~)

/Instructor

履修年次 3年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 \circ \circ Ο O O Ο

対象学科 【選択】 環境生命工学科 【選択必修】 エネルギー循環化学科

/Department

※お知らせ/Notice 開講期が第2学期から第1学期になりますので注意してください。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解 ●	•	高分子化学の基本的な原理、法則に関する正しい知識を修得する。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力		基本的な原理、法則を組み合わせて、未知の問題を解決するための正しい方法を考案で きる能力を修得する。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

高分子化学

CHM340M

授業の概要 /Course Description

高分子は、プラスチック、繊維、ゴムなど、我々の生活に不可欠な材料であることはもとより、バイオテクノロジーやナノテクノロジーなど、科学の最先端においても必要不可欠な物質である。したがって、高分子化学の基礎を習得することは、将来、化学に関わる研究者、技術者にとって必要不可欠である。本講義では、高分子化合物の生成や反応及び構造など、高分子化学の基礎について講義を行う。

教科書 /Textbooks

指定なし

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

基礎高分子科学 高分子学会編 東京化学同人

高分子化学 共立出版

授業計画・内容 /Class schedules and Contents

- 1. イントロダクション、高分子の定義と分類
- 2. 高分子の分子構造・分子量・分子量分布
- 3. 高分子の合成(1)分類と概要 (2)不飽和化合物の付加重合(ラジカル重合)
- 4. 高分子の合成(3)不飽和化合物の付加重合(ラジカル重合)
- 5. 高分子の合成(4)不飽和化合物の付加重合(ラジカル共重合)
- 6 高分子の合成(5)不飽和化合物の付加重合(カチオン重合、アニオン重合)
- 7. 高分子の合成(6)不飽和化合物の付加重合(配位重合、開環重合)
- 8. 重縮合と重付加
- 9. 高分子反応
- 10. 高分子の特性・溶液の性質
- 11 高分子の固体構造・熱的性質
- 12. 力学的性質
- 13. 高分子材料
- 14.生体高分子
- 15.まとめ

成績評価の方法 /Assessment Method

期末試験 100%

全範囲にわたり出題

事前・事後学習の内容 /Preparation and Review

講義で取り扱った内容について、参考書などを用いて復習しておくこと。

高分子化学

(Polymer Chemistry)

履修上の注意 /Remarks

有機化学、物理化学の基礎を復習しておくこと

担当者からのメッセージ /Message from the Instructor

地圏環境論

(Geosphere Environment)

担当者名 伊藤 洋 / Yo ITO / エネルギー循環化学科 (19~)

/Instructor

履修年次 3年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance \circ Ο Ο O О O

対象学科 【選択】 環境生命工学科 【選択必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

]能であるこ

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

地**圏**環境論 ENV331M

授業の概要 /Course Description

地圏は,土と水(地下水)で構成され,動植物生存や人間活動(農産物生産,都市形成など)の基盤となっている.土壌(地圏の特に表層)は水・物質・熱の保持・輸送・浄化機能がある.地圏環境を構成する土壌のこういった物理・化学性に係る基礎を学ぶことを目的として,土壌の性質,水分・化学物質移動などの基礎原理を理解できるように学習する.

教科書 /Textbooks

土壌物理学(宮崎毅ほか著、朝倉書店)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

特になし

授業計画・内容 /Class schedules and Contents

- 1 ガイダンス
- 2 土と水の性質
- 3 土の保水性
- 4 土中の水分移動 I (ダルシー則、飽和流)
- 5 土中の水分移動 Ⅱ(不飽和流など)
- 6 土中の溶質移動 I(基本的メカニズム)
- 7 土中の溶質移動 II(拡散、移流、吸着など)
- 8 中間まとめ・演習
- 9 土中の熱移動
- 10 土中のガス移動
- 11 移動現象の基礎方程式 I(飽和・不飽和流)
- 12 移動現象の基礎方程式 II(移流分散、熱移動)
- 13 移動現象の基礎方程式 Ⅲ(ガス拡散)
- 14 まとめ・演習
- 15 全体の総括

成績評価の方法 /Assessment Method

平常点 40%

(学習態度・演習等)

期末試験 60%

事前・事後学習の内容 /Preparation and Review

授業内容、特に授業中に実施する演習問題の復習を行うこと。

地圏環境論

(Geosphere Environment)

履修上の注意 /Remarks

前回の授業内容の復習を行うこと。関数電卓を持参すること。

適宜、演習を実施し、レポートの提出を求める。

担当者からのメッセージ /Message from the Instructor

地球環境を構成する大気・土・水の中で土壌物理学は、土と水の一部を取り扱う学問です。土壌に係る現象の基礎を学ぶことで、より地圏環境 問題を深く理解できるようになるでしょう。

水処理工学

(Water Treatment Engineering)

担当者名 - 寺嶋 光春 / Mitsuharu TERASHIMA / エネルギー循環化学科(19~)

/Instructor

履修年次 3年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance \circ \circ \circ O O Ο

対象学科 【選択】 環境生命工学科 【選択必修】 エネルギー循環化学科

/Department

※お知らせ/Notice 開講期が第2学期から第1学期になりますので注意してください。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

	学位授与方針における能力			到達目標
知識・理解		専門分野の知識・理解		
技能		専門分野のスキル		
思考・判断・表現	現	課題発見・分析・解決力	•	得られたデータや解析結果を基に、現状を把握しながら、論理的な思考・判断によって、環境に関する問題解決能力を身につける。
		ブレゼンテーション力		
		実践力(チャレンジ力)	•	地球規模で抱えている環境・エネルギー問題を解決する意欲と行動力を身につける。
関心・意欲・態	r i	社会的責任・倫理観		
	生涯学習力	•	地球規模で抱えている環境・エネルギー問題に関心を持つ。	
		コミュニケーション力		

※エネルギー循環化学科以外の学生は、学位授与方針における能力が異なる場合があります。

水処理工学 ENV330M

授業の概要 /Course Description

河川、湖沼、海域などの水環境を保全するためには,水質を把握し制御することが必要となる。講義は、水環境の実態を把握するために必要不可欠な水質について分析試験方法も含めて工学的な視点から進める。これらをもとに、水を利用するため、および水環境を理解するための基本的な反応・解析の考え方を習得する。

教科書 /Textbooks

なし

必要に応じて参考資料を配布する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

講義中に適宜紹介する。

授業計画・内容 /Class schedules and Contents

- 1. 水環境と水質の概要
- 2. 水環境と水質汚濁
- 3. 水質汚濁の現状
- 4. 水質汚濁の指標
- 5. 各種水質基準
- 6. 水の物理的性状
- 7. 水の化学的性状
- 8. 水使用の合理化(1): 概要
- 9. 水使用の合理化(2): 循環利用
- 10.水質汚濁の機構と水理
- 11. 排水処理の分類
- 12. 固形物の除去
- 13. 有機物の除去
- 14. 有害物質の処理(1): 概要
- 15. 有害物質の処理(2): 具体例

成績評価の方法 /Assessment Method

レポート・小テスト 40%

期末試験 60%

事前・事後学習の内容 /Preparation and Review

授業学習する内容の一部について予め調査を行う事前学習を課すことがある

また,授業で学習した内容の一部について演習や復習等をおこなう事後学習を課すことがある

水処理工学

(Water Treatment Engineering)

履修上の注意 /Remarks

電卓を持参すること。

また、化学、生物学は物理学や数学を基礎とするところが多い。そのため本講義においても参照することが多いので、高等学校や大学における 物理や数学を習得しておくこと。

用語・公式・定義、および原理に関わる基礎事項が多いので、確実な理解のためには復習が重要である。

担当者からのメッセージ /Message from the Instructor

演習問題を多くとりあげるので、知識が身につきます。

生物化学

(Biochemistry)

担当者名 河野 智謙 / Tomonori KAWANO / 環境生命工学科 (19~)

/Instructor

履修年次 2年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 O O O O

対象学科 【必修】 環境生命工学科 【選択】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	エネルギー代謝など生命科学の基礎としての生物化学の考え方を理解する。
技能	専門分野のスキル	•	酵素反応速度論、代謝制御を修得する。
思考・判断・表現	課題発見・分析・解決力	•	タンパク質の構造と機能、代謝経路、情報伝達経路についての課題を通じて自主的に学習することができる。
	プレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
1到17.1四1V.1816	生涯学習力		
	コミュニケーション力		

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

生物化学

BI0220M

授業の概要 /Course Description

本講義では、「基礎生物化学」で学んだ内容を下地に、生体内で起きるエネルギー代謝など化学反応についての詳細を学び、生物化学からみた生命像の理解を目指す。具体的には、解糖系、クエン酸回路、電子伝達系、光合成など代謝とエネルギー生産の基礎、生体分子の合成と分解など物質代謝の基礎、遺伝子の発現と複製など、機能面から生物化学に関する知見を深める。また、物質輸送、細胞内情報伝達、遺伝子発現制御による代謝制御の仕組みについても学び、動的な生命現象の理解を目指す。特に後半に重点を置くのが、代謝制御や光合成を理解するために重要な、ミカエリス・メンテンの式およびそれを基礎とした酵素や光合成の反応速度論である。酵素反応の阻害様式の決定や数値やグラフの扱いについても習熟する必要がある。

教科書 /Textbooks

田宮信雄他訳「ヴォート基礎生化学」第3版、東京化学同人

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

Albertsら著、中村・松原監訳「細胞の分子生物学」第5版、 ニュートンプレス

福岡伸一監訳「マッキー生化学」第4版、化学同人

生化学辞典第4版、東京化学同人

授業計画・内容 /Class schedules and Contents

- 1 イントロダクション 「生物化学とは」、「生命の誕生と生化学」、「生化学反応の場としての細胞とオルガネラ」
- 2 代謝とエネルギー(1)解糖系と糖新生
- 3 代謝とエネルギー(2)TCA回路
- 4 代謝とエネルギー(3)電子伝達系とATP収支
- 5 代謝とエネルギー(4)光合成(前半) 【明反応、電子伝達系】
- 6 生体分子の合成と分解
- 7 生体膜と物質輸送、細胞内情報伝達を担う分子たち
- 8 前半の復習、確認試験
- 9 代謝の量的制御と質的制御(1) 【酵素反応速度論】
- 10 代謝とエネルギー(5)光合成(後半) 【暗反応、炭素固定、光合成速度論】
- 11 代謝の量的制御と質的制御(3)遺伝情報と遺伝子
- 12 代謝の量的制御と質的制御(4)遺伝子の発現と複製 【核酸の構造、DNAの複製、修復、組換え】
- 13 代謝の量的制御と質的制御(5)遺伝子の発現と複製 【転写、RNAプロセシング、翻訳】
- 14 遺伝子発現制御と代謝制御
- 15 まとめと後半の復習

生物化学

(Biochemistry)

成績評価の方法 /Assessment Method

課題(予習・復習を反映した内容)、レポート 20% 適宜指示する(2回程度)

確認試験 40% 第1回~7回の範囲から出題 期末試験 40% 主に第9回以降の範囲から出題

事前・事後学習の内容 /Preparation and Review

事前学習:基礎生物化学の内容を理解しておくこと 事後学習:毎回の講義内容をよく復習しておくこと

履修上の注意 /Remarks

教科書の「Ⅳ代謝」と「Ⅴ遺伝子の発現と複製」の範囲を読んで十分な予習をすること。また、配布物およびワークシートに従って予習と復習をすること。

担当者からのメッセージ /Message from the Instructor

1年次の「基礎生物化学」の内容をよく復習して講義に臨んでください。前半には、代謝経路などいわゆる「記憶」すべき内容が多く有ります。日々の予習復習において、各経路における物質変化の様子を書き表せるようになるまで繰り返し、繰り返し、自らペンと紙を使って学習してください。後半にミカエリス・メンテンの式やラインウィーバーバークプロット法など反応速度の理解や、酵素反応の阻害や活性化についての理解を深めるための手法を学びます。成績評価には含めませんが、学習進度の高い学生は、さらにヒルの式など生化学反応の動的理解に有用な数値解析の手法についても学習することが望まれます。エクセルなどを使えば、自宅のPCで反応シミュレーションの自習も可能です。

統計熱力学

(Thermodynamics and Statistical Mechanics)

担当者名 櫻井 和朗 / Kazuo SAKURAI / 環境技術研究所

/Instructor

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 Ο O O О O

対象学科 【必修】 エネルギー循環化学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標	
知識・理解	専門分野の知識・理解	•	熱力学の復習と、統計力学の基礎的な考え方(特にボルツマン分布とその応用)について学ぶ。	
技能	専門分野のスキル	•	統計力学的な思考方法を修得する。	
田本 が味く 羊田	課題発見・分析・解決力			
思考・判断・表現	プレゼンテーション力			
	実践力(チャレンジ力)			
 関心・意欲・態度	社会的責任・倫理観			
	生涯学習力			
	コミュニケーション力			
※理接生会工学科内内の学生は、学研授与工会における終わが異なる場合がおけます。				

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

統計熱力学

CHM212M

授業の概要 /Course Description

統計熱力学について学ぶ。熱力学の知識の上にたち、統計熱力学は、多数の原子・分子から構成されている物質の特性を微視的状態の集合として捕らえる考え方の基礎について学ぶ.

教科書 /Textbooks

なし プリントを配布する

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

化学系の統計力学入門 Benjamin Widomt著 甲賀研一郎訳

授業計画・内容 /Class schedules and Contents

- 1 熱力学の復習(1)【第1法則】
- 2 熱力学の復習(2)【第2法則】
- 3 熱力学の復習(3)【熱力学関数】
- 4 熱力学の演習
- 5 ボルツマン分布則と分配関数(1)【ボルツマン分布】
- 6 ボルツマン分布則と分配関数(2)【分配関数、期待値】
- 7 分配関数の応用
- 8 理想気体の統計熱力学(1)【内部エネルギー】
- 9 理想気体の統計熱力学(2)【2原子分子】
- 10 演習(講義第1回~第9回)
- 11 分配関数と平衡定数
- 12 高分子鎖の統計力学
- 13 演習(講義第11回~第12回)
- 14 演習(全体)
- 15 まとめ

成績評価の方法 /Assessment Method

中間試験40%(追試あり)、期末試験60%

事前・事後学習の内容 /Preparation and Review

事前学習:2年前期までに学習する熱力学についてよく理解しておくこと

事後学習:板書と配布資料をよく復習しておくこと

履修上の注意 /Remarks

予習・復習をしっかり行うこと。 講義は板書と配布資料で行う。

統計熱力学

(Thermodynamics and Statistical Mechanics)

担当者からのメッセージ /Message from the Instructor

熱力学の分子論的根拠を与える重要な分野であり、ボルツマン統計をしっかりと学んで欲しい。

分子生物学

(Molecular Biology)

担当者名 木原 隆典 / Takanori KIHARA / 環境生命工学科 (19~)

/Instructor

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 /Year of School Entrance O Ο O O

対象学科 【必修】 環境生命工学科 【選択】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	特にDNAの複製と転写を中心に、分子生物学に関する基礎的専門知識を修得する。
技能	専門分野のスキル	•	遺伝子を中心とした生命の基本戦略を理解・分析する能力を身につける。
思考・判断・表現	課題発見・分析・解決力		
心传、中断、衣坑	ブレゼンテーション力		
	実践力(チャレンジ力)		
 関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

分子生物学 BI0221M

2019

授業の概要 /Course Description

分子生物学は現代の生命科学の基礎となる学問である。特に本講義では、DNAの構造、DNAの複製、RNAへの転写、タンパク質への翻訳、タンパク質の機能制御、遺伝子発現制御といった内容を中心に講義をする。

教科書 /Textbooks

【教科書】

- ・アメリカ版 大学生物学の教科書 第2巻 分子遺伝学 サダヴァ 他著 講談社ブルーバックス 【問題集】
- ・生化学・分子生物学演習 第2版 猪飼・野島 著 東京化学同人

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

分子生物学 第2版 柳田・西田・野田 編 東京化学同人

細胞の分子生物学 第6版 Alberts 他 著 ニュートンプレス (○)

授業計画・内容 /Class schedules and Contents

- 1.分子生物学概論
- 2. ノーベル医学・生理学賞概説
- 3.分子生物学の基本I(核酸とは何か)
- 4.分子生物学の基本II(遺伝情報について)
- 5.基礎分子生物学I(DNA)
- 6. 基礎分子生物学II(DNAの複製)
- 7 . 基礎分子生物学Ⅲ(転写)
- 8.基礎分子生物学Ⅳ(翻訳)
- 9. 基礎分子生物学V(タンパク質の一生)
- 10.基礎分子生物学VI(転写制御)
- 11.分子生物学I(クロマチン構造)
- 12.分子生物学Ⅱ(複製・組換えの詳細)
- 13 分子生物学Ⅲ(転写・翻訳の詳細)
- 14.分子生物学Ⅳ(遺伝子発現調節の詳細)
- 15.分子生物学V(細胞生物学)

成績評価の方法 /Assessment Method

積極的な授業参加・課題 40%

試験 60%

事前・事後学習の内容 /Preparation and Review

事前: 授業の理解のために教科書の該当箇所を読んでおくこと(30分)。

事後: プリントを読み返して授業内容の復習をし、問題集の該当箇所を解くこと(90分)。

分子生物学

(Molecular Biology)

履修上の注意 /Remarks

生物学および生化学(基礎生化学・生化学)の内容を前提としているため、十分に復習し理解しておくこと。 高校時代に生物を十分学習していない学生は、高校の参考書などを事前に読んでおくこと。

担当者からのメッセージ /Message from the Instructor

分子生物学は20世紀における最大の科学革命であり、さらに今もなお新しい発見が行われている分野です。 是非、生命が作り出した素晴らしい分子機構を感じて下さい。

錯体化学

(Coordination Chemistry)

担当有有 /Instructor 礒田 隆聡 / Takaaki ISODA / 環境生命工学科 (19~)

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2012 2013 2014 2016 2018 2019 2008 2009 2010 2011 2015 2017 /Year of School Entrance O O O

対象学科 【選択】 環境生命工学科 【選択必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	専門分野の知識・理解	•	錯体化学の理解に必要な基礎的専門	50識を修得する。	
技能	専門分野のスキル	-	無機化学の基礎を理解し、有機化合 身につける。	かと金属の反応性、構造、機能につい	て専門知識を
田土 小阪 東田	課題発見・分析・解決力				
思考・判断・表現 	ブレゼンテーション力				
	実践力(チャレンジ力)				
 関心・意欲・態度	社会的責任・倫理観				
	生涯学習力				
	コミュニケーション力				
※環境生命工学科的外の9		が異	なる場合があります。		

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

錯体化学 CHM233M

授業の概要 /Course Description

錯体化学を理解するためには、無機化学、有機化学、物理化学の3つの分野の基礎知識が必要です。この基礎学問を修得できると、2年生後期の 有機化学実験や3年生前期の環境分析実習で、有機反応の機構や分析方法の原理を理解できるようになります。また皆さんが将来、触媒や高分子 材料、化粧品や食品、医薬品等の機能性材料を開発する際に必ず必要な知識です。

教科書 /Textbooks

基礎からの無機化学※

(山村博、門間英毅、高山俊夫 共著/朝倉出版/ISBN:978-4-254-14075-0)

※注:環境生命工学科2年生で無機化学(生命)[必修科目]を前期に受講した者は、同じ教科書のため改めて購入の必要はない。(エネルギー循環化学科の学生は新規に購入が必要)

参考書(図書館蔵書には 〇) /References(Available in the library: 〇)

錯体化学

(Coordination Chemistry)

授業計画・内容 /Class schedules and Contents

- 1 はじめに(ガイダンス)
- 2 基礎編 | 光と電子の二重性
- 3 基礎編Ⅱ 量子数と電子軌道
- 4 基礎編 Ⅲ 電子配置とエネルギー準位
- 5 演習1 (基礎編2~4の理解度確認)
- 6 基礎編 IV 分子軌道と共有結合
- 7 基礎編 V 混成軌道と化合物の性質
- 8 演習2 (基礎編6~7の理解度確認)
- 9 応用編 I 配位化合物の特徴
- 10 応用編Ⅱ結晶場理論と錯体の性質
- 11 演習3(応用編9~10の理解度確認)
- 12 応用編 Ⅲ 錯体の触媒反応
- 13 応用編 Ⅲ 錯体の電気化学
- 14 応用編 Ⅲ 生体と錯体
- 15 総復習・期末試験対策

成績評価の方法 /Assessment Method

評価項目:配点:比率

平常点(10点満点):1点×10回:10%

演習点(40点満点):第1回20点+2回10点+3回10点:40%

期末試験 (50点満点):50点:50%

※比率の合計は100%

※注 レポート,追試等の措置は行わないので、講義に毎回出席し、演習を必ず受けること

事前・事後学習の内容 /Preparation and Review

事前学習:前期の無機化学(化学)あるいは無機化学(生命)を履修し、大学での無機化学の基礎について学習しておくこと。

事後学習:ノートをまとめ、演習の際に持ち込めるように準備すること。

履修上の注意 /Remarks

- ①講義中の画像撮影は認めない
- ②演習時は、各自の教科書、ノートの持ち込みのみ可とする(コピーの持ち込み、携帯端末等使用および保存画像情報の使用は不可)

担当者からのメッセージ /Message from the Instructor

本講義では前半は無機化学の基礎を教科書を用いて復習します。ここでは金属イオンと有機物からなる錯体分子の基礎事項(電子配置、化学構造、物性)について、演習を行いながら講義を進めます。後半では錯体の光や色、発光などの物理現象に関わる理論(結晶場理論)について学び、これらの基礎知識をベースとして最後に触媒機能、電気化学反応、生体反応と錯体についての応用について学習します。

環境政策概論

(Introduction to Environmental Policy and Administration)

担当者名 藤山 淳史 / Atsushi FUJIYAMA / 環境生命工学科 (19~)

/Instructor

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O O O

対象学科 【選択】 エネルギー循環化学科 【選択必修】 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力				到達目標	
知識・理	里解	専門分野の知識・理解	•	環境政策の理解に必要な基礎的専門知識を修得する。	
技能		専門分野のスキル	•	環境政策で必要とされる基礎知識を文献や情報調査により収集・解析し、環境政策の要点を抽出する技能を身につける。	
思考・判断・表現	如此, 丰田	課題発見・分析・解決力			
	刊的,农场	ブレゼンテーション力			
関心・意欲・態度		実践力(チャレンジ力)	•	環境政策分野における国際的な視野をもって広く社会に貢献することができる。	
	急欲・態度	社会的責任・倫理観	•	環境政策が社会に及ぼす影響を理解し、社会的責任感と倫理観を身につけ、他者と協力 しながら行動することができる。	
	-	生涯学習力			
		コミュニケーション力			

[※]環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

環境政策概論 ENV220M

授業の概要 /Course Description

環境政策(法制度等含む)は、新しい政策課題に対応する形で、さまざまな原則が提案され、新しい制度が導入されている。本科目では日本の 基本的な環境政策の動向、問題の状況、法的枠組み、さらには国際的な動向について公害対策・温暖化対策などを中心に概説する。

教科書 /Textbooks

適宜レジュメを配布する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

倉坂秀史 「環境政策論【第3版】」(信山社2015) 松下和夫 「環境政策学のすすめ」(丸善2007)

授業計画・内容 /Class schedules and Contents

第1回 ガイダンス

第2回 日本の法制度の枠組みの特徴

第3回 日本の公害・環境政策の変遷:歴史と黎明期

第4回 日本の公害・環境政策の変遷:公害対策基本法が制定されたころ

第5回 日本の公害・環境政策の変遷:環境庁の政策

第6回 日本の公害・環境政策の変遷:環境問題の変容

第7回 日本の公害・環境政策の変遷:環境基本政策とその後

第8回 地球温暖化に対する対策:現象とメカニズム

第9回 地球温暖化に対する対策:エネルギーの動向 第10回 地球温暖化に対する対策:国際協調へ向けた取り組み

第11回 地球温暖化に対する対策:京都議定書とその後

第12回 地球温暖化に対する対策:パリ協定と今後

第13回 循環型社会とリサイクル

第14回 化学物質の管理

第15回 まとめ

成績評価の方法 /Assessment Method

積極的な授業参加 20%

レポート 30% 期末試験 50%

事前・事後学習の内容 /Preparation and Review

環境関連の時事問題に関心を持ち、日々報道されるさまざまな公害・環境対策や地球温暖化問題に関するニュースをチェックしてください。

環境政策概論

(Introduction to Environmental Policy and Administration)

履修上の注意 /Remarks

担当者からのメッセージ /Message from the Instructor

有機化学Ⅱ

(Organic Chemistry II)

担当者名 櫻井 和朗 / Kazuo SAKURAI / 環境技術研究所, 望月 慎一 / Shinichi MOCHIZUKI / 環境生命工学科(19~)

/Instructor 藤井 翔太 / Shota FUJII / 非常勤講師

履修年次 2年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance O Ο O O

対象学科 【必修】 エネルギー循環化学科 【選択必修】 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	専門分野の知識・理解	•	芳香族の有機化学、カルボニル基等の官能基の有機化学を修得する。		
技能	専門分野のスキル	•	有機化学と合成化学に関する基礎を修得する。		
思考・判断・表現	課題発見・分析・解決力				
心传"中断" 农坑	ブレゼンテーション力				
	実践力(チャレンジ力)				
 関心・意欲・態度	社会的責任・倫理観				
	生涯学習力				
	コミュニケーション力				

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。 所属学科の履修ガイドのカリキュラムマップで確認してください。

有機化学II CHM222M

授業の概要 /Course Description

化学の最も重要な基礎学問の一つである有機化学を発展的に理解し、官能基の化学反応に関して、反復演習によって理解力を積み上げる。随時 、有機化学の応用分野である、生物学や医学、工学での実例を紹介する。

教科書 /Textbooks

ボルハルト・ショアー現代有機化学(下)

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

とくになし

授業計画・内容 /Class schedules and Contents

- 1 ベンゼン環と芳香族求電子置換反応
- 2 ベンゼン環の置換基の位置選択性
- 3 芳香族の化学の演習
- 4 アルデヒドとケトン(1)【カルボニル基の反応性】
- 5 アルデヒドとケトン(2)【求核反応】
- 6 エノラートとアルドール縮合(1)【アルドール縮合】
- 7エノラートとアルドール縮合(2)【保護基】
- 8 カルボン酸の化学(1)【マイケル付加】
- 9 カルボン酸の化学(2)【ロビンソンの環化反応】
- 10 アミンの化学(1)【アミノ基】
- 11 アミノの化学(2)【ホフマン分解】
- 12 Claisen縮合とエノラート(1)【Claisen縮合】
- 13 Claisen縮合とエノラート(2)【マロン酸エステル】
- 14 演習
- 15 まとめ

成績評価の方法 /Assessment Method

中間試験40%(追試あり)、期末試験60%

事前・事後学習の内容 /Preparation and Review

事前学習:2年前期までの基礎有機化学、有機化学|をよく理解しておくこと

事後学習:教科書、板書をよく復習すること

履修上の注意 /Remarks

復習をしっかりすること

有機化学Ⅱ

(Organic Chemistry II)

担当者からのメッセージ /Message from the Instructor

有機化学は化学の最も重要な基礎学問の一つである。化学系の専門分野での仕事には不可欠な学問分野であることを十分に自覚して講義にのぞむこと。

環境計画学

(Environmental Planning)

担当者名 松本 亨 / Toru MATSUMOTO / 環境技術研究所

/Instructor

履修年次 3年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance O Ο O O O

対象学科 【選択】 エネルギー循環化学科 【選択必修】 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解●		現状を把握するための環境評価手法、改善の効果推計手法等に関する専門的知識を修得 する。
技能	専門分野のスキル		
思考・判断・表現	課題発見・分析・解決力		
心传 "中的" 众坑	プレゼンテーション力		
	実践力(チャレンジ力) ●	•	実社会の問題を題材に各種環境評価手法を学ぶことで、実践力を身につける。
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力 ●		実社会に出ても継続的に最先端の評価手法にアクセスできるよう、その基礎を修得す る。
	コミュニケーション力		

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。

環境計画学 ENV320M

授業の概要 /Course Description

環境計画を考える上で、必要となる意志決定ツールを中心に修得する。まず、都市や国土を規定している都市計画、国土計画の諸制度の成り立ちとその実際について学ぶ。次いで、投資判定分析、費用便益分析、多目的意志決定手法などについて学ぶ。さらに、従来経済価値を認めてこなかった環境資源の扱いも重要な課題であり、そのための環境の経済評価手法について、その基本的な概念と手法を修得する。また、合意形成プロセスのための手法と実際についても講究する。

教科書 /Textbooks

指定しない

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

田中勝 編著「循環型社会評価手法の基礎知識 」技報堂出版

その他、講義中に指示する

授業計画・内容 /Class schedules and Contents

- 1 環境計画をめぐる諸状況
- 2 持続可能性評価指標
- 3 物質フロー分析【基礎的概念】
- 4 物質フロー分析【応用】
- 5 ライフサイクルアセスメント【基礎的概念】
- 6 ライフサイクルアセスメント【応用】
- 7 演習
- 8 費用便益分析【基礎的概念】
- 9 費用便益分析【応用】
- 10 リスクアセスメント・リスク便益分析
- 11 環境経済評価手法【基礎的概念】
- 12 環境経済評価手法【応用】
- 13 演習
- 14 多目的意志決定手法
- 15 まとめ

成績評価の方法 /Assessment Method

平常点(授業への積極的参加) 10% ※2/3以上出席すること

レポート 30%

期末試験 60%

環境計画学

(Environmental Planning)

事前・事後学習の内容 /Preparation and Review

事前学習は特に必要ないが、毎回の講義を十分に理解するよう事後の復習に努めること。

履修上の注意 /Remarks

必要に応じて、関数電卓、PC(Excel)を使用することがあります。

担当者からのメッセージ /Message from the Instructor

経済縮小・人口縮小時代が到来し、社会資本ストックの更新期を迎える中で、持続可能型社会の形成という21世紀の課題に答えるべく、「社会をどのように再構築するか」「開発か環境資源を保護すべきか」といった問題に取り組むためのツールを学びます。

微生物学

(Microbiology)

担当者名 森田 洋 / Hiroshi MORITA / 環境生命工学科 (19~)

/Instructor

履修年次3年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 O Ο O O O O

対象学科 【選択】エネルギー循環化学科【選択必修】 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	 微生物の分類、細胞の構造や形態形成の基礎、生育条件や生理などについて修得する。
技能	専門分野のスキル	•	微生物の基本的な性質を理解することで、バイオテクノロジー分野において課題を実用 化に結び付け、微生物工業の諸問題を解決するスキルを養う。
思考・判断・表現	課題発見・分析・解決力	•	微生物をどのような形で活用していけば、私たちの暮らしや健康を支えることができる のか理解を深める。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーションカ		

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。

微生物学

BI0310M

授業の概要 /Course Description

土壌、河川、海、空気中など地球上の至るところに微生物は存在しており、その微生物の種類は約20万種ともいわれている。微生物は多種多様な物質を栄養源として生育していることから、通常では高等動植物が存在できない極限環境にも幅広く生息している。本講義では、微生物の種類と基本的な性質について解説する。更に微生物は様々な工業分野で広く利用されており、私たちの暮らしに欠かせないものであることを理解する。

教科書 /Textbooks

プリントを配布する

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

- ○ブラック微生物学(丸善株式会社)、林英生、岩本愛吉、神谷茂、高橋秀実監訳、1993年、7900円
- ○バイオのための基礎微生物学(講談社サイエンティフィク)、扇元敬司著、2002年、3800円

授業計画・内容 /Class schedules and Contents

- 1.微生物の拮抗作用と共存作用
- 2.微生物の分類と命名
- 3 . 細菌の構造と生活環
- 4.アーキア(古細菌)
- 5 食中毒の分類と微生物
- 6 . 様々な食中毒細菌|【感染型食中毒】
- 7 . 様々な食中毒細菌||【毒素型食中毒】
- 8. 前半の復習、確認試験
- 9. ウイルス・寄生虫
- 10.カビの分類と生活環|【子のう菌群、担子菌群】
- 11.カビの分類と生活環II【不完全菌群、接合菌群】
- 12.微生物の制御(殺菌と静菌)
- 13.酵母の分類と生活環
- 14.放線菌の分類と機能
- 15.微生物の利用

成績評価の方法 /Assessment Method

期末試験(60%) 確認試験(25%)

授業態度・課題(15%)

微生物学

(Microbiology)

事前・事後学習の内容 /Preparation and Review

授業では幅広い内容を取り上げるため、授業開始前までにプリントや参考書などを活用しながら事前学習を行い、授業終了後には復習すること により理解をさらに深めてほしい。

履修上の注意 /Remarks

特になし

担当者からのメッセージ /Message from the Instructor

本講義において微生物に関する理解を深め、私たちの暮らしに微生物は欠かせないものであることを認識してほしい。そしてこのような微生物 をどのような形で活用していけば、私たちの生活に役立つか考えてほしい。

キーワード /Keywords

細菌、カビ、酵母、食品衛生、発酵

生態工学

(Ecological Engineering)

担当者名 原口 昭 / Akira HARAGUCHI / 環境生命工学科(19~)

/Instructor

 履修年次
 3年次
 単位
 2単位
 学期
 2学期
 授業形態
 講義
 クラス

 /Year
 /Credits
 /Semester
 /Class Format
 /Class

対象入学年度 2010 2012 2013 2014 2015 2016 2017 2018 2019 2008 2009 2011 /Year of School Entrance 0 O O О O

対象学科 【選択】 エネルギー循環化学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	生態工学に関する基礎・応用知識を修得し、環境問題との関連性を総合的に理解する。
技能	専門分野のスキル	•	自然科学に関する情報を収集・解析し、総合的に理解し、生態系や環境、社会に配慮しながら技術開発を進める技能を身につける。
思考・判断・表現	課題発見・分析・解決力	•	自然に対する人間活動の影響を理解し、問題解決のために生態系のもつ仕組みを活用する技術を提案できるようになる。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
 関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		
	•		

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。

生態工学 BI0311M

授業の概要 /Course Description

生態系の機能や生態系が維持される機構を学び、ここから生態系の保全技術、利活用法について考究します。講義の前半では、個々の生態系に ついての機能や維持機構について解説します。後半では、生態系の諸要素を計測し、評価する方法、および生態系保全技術について解説します。

教科書 /Textbooks

生態学入門一生態系を理解する一 第2版 原口昭 編著 生物研究社 ISBN 978 4 915342 71 4

- * 基盤教育科目・教養教育科目(環境)の「生態学」でも同書を使用します
- *講義前半の「第1部 生態系の機能と保全」で使用します
- * 第2版の内容に準拠して講義を行いますので、第2版を用意してください

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

〇日本の湿原 原口昭 著 生物研究社 ISBN 978 4 915342 67 7

生態工学

(Ecological Engineering)

授業計画・内容 /Class schedules and Contents

第1部 生態系の機能と保全

- 1.森林生態系
- 2. 陸水生態系
- 3.湿地生態系
- 4.海洋生態系
- 5. 熱帯林生態系
- 6 . 農林生態系
- 7. エネルギーと生態系

第2部 生態系の評価法

- 1.植物群集の調査法
- 2.動物個体群の調査法
- 3 土壌調査法
- 4.水圏調査法
- 5. リモートセンシング法

第3部 生態系保全技術

- 1.生物多様性の評価
- 2. 水質保全
- 3 土壌保全
- *講義の内容と順序は変更になる場合があります

成績評価の方法 /Assessment Method

レポート試験:100%

事前・事後学習の内容 /Preparation and Review

事前・事後学習は必要ありませんが、開講日までに基盤教育科目・教養教育科目(環境)の「生態学」の復習をしておくか、もしくは指定教科 書を通読しておくと理解が深まります。レポート試験を課しますので、講義内容を復習し、質の高いレポートを作成してください。

履修上の注意 /Remarks

基盤教育科目「生態学」が基礎となっている講義科目であるので、事前に「生態学」を履修しておくことと、「生態学」の講義内容を復習しておくことを勧めます。

担当者からのメッセージ /Message from the Instructor

生態系や生物・環境調査に興味がないと、講義に意欲的に臨めない可能性がありますので、選択の際はその点をよく検討してください。

キーワード /Keywords

生態系、環境計測、環境アセスメント、生物調査法、保全

生物工学

(Biological Engineering)

担当者名 中澤 浩二 / Koji NAKAZAWA / 環境生命工学科 (19~)

/Instructor

履修年次 3年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 O Ο O O О O

対象学科 【選択】 エネルギー循環化学科, 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	生物工学に関する専門知識を修得する。
技能	専門分野のスキル	•	生物工学に必要な技能を修得する。
思考・判断・表現	課題発見・分析・解決力	•	生物工学分野において、問題の発見やその解決策を導き出す能力を修得する。
100-9 110/1 120/2	ブレゼンテーション力		
	実践力(チャレンジ力)		
 関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。

生物工学 BI0330M

授業の概要 /Course Description

酵素、微生物、動植物細胞などを産業利用する場合、原料調製、反応、分離といった一連のプロセスを考えることが重要である。本講義では、 生体触媒の特性や調製に関わるアップストリームプロセス、バイオリアクター操作などのプロダクションプロセス、バイオセパレーションなど のダウンストリームプロセスを学び、バイオプロダクトの生産について理解する。

教科書 /Textbooks

プリント配布

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

なし

授業計画・内容 /Class schedules and Contents

- 1 導入(生物工学とは)
- 2 バイオプロセスの構成
- 3 生体触媒の特徴
- 4 酵素反応速度論1【反応条件】
- 5 酵素反応速度論2【速度論】
- 6 細胞反応速度論 1 【反応条件】
- 7 細胞反応速度論2【速度論】
- 8 前半の復習、確認テスト
- 9 培養操作
- 10 バイオリアクター
- 11 酸素供給
- 12 スケールアップ
- 13 バイオセパレーション 1 【破砕・遠心・抽出】
- 14 バイオセパレーション 2 【膜分離・クロマトグラフィー】
- 15 総復習

成績評価の方法 /Assessment Method

授業への取り組み・・演習 10%

確認テスト 45%

期末テスト 45%

事前・事後学習の内容 /Preparation and Review

事前の予備学習を行うとともに、授業後には反復学習により理解を深めること。

履修上の注意 /Remarks

生物工学

(Biological Engineering)

担当者からのメッセージ /Message from the Instructor

生物を利用する産業において、バイオプロセスを理解できる(理解している)ことこそが工学系出身の強みといえます。

遺伝子工学

(Genetic Engineering)

担当者名 木原 隆典 / Takanori KIHARA / 環境生命工学科 (19~)

/Instructor

履修年次 3年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2018 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 0 \circ О O O Ο

対象学科 【選択】エネルギー循環化学科【選択必修】 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解 ●	•	遺伝子工学に関する専門知識を理解する。
技能	専門分野のスキル ●	•	遺伝子工学を実現する技術を理解し、身につける。
思考・判断・表現	課題発見・分析・解決力 ●	•	遺伝子工学を利用して、様々な社会的課題の解決方法を提案できるようにする。
	ブレゼンテーション力		
	実践力(チャレンジ力)		
関心・意欲・態度	社会的責任・倫理観		
	生涯学習力		
	コミュニケーション力		

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。

遺伝子工学 E

BI0320M

授業の概要 /Course Description

過去半世紀にわたって築き上げられた分子生物学は、それを基本とした遺伝子工学の発展により社会に貢献している。本講義を通じて遺伝子工学の基本を学び、それを利用、さらには応用する力を養う。

教科書 /Textbooks

【教科書】

・アメリカ版 大学生物学の教科書 第3巻 分子生物学 サダヴァ ほか著 講談社ブルーバックス 【問題集】

・生化学・分子生物学演習 第2版 猪飼・野島 著 東京化学同人

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

- ・遺伝子工学 基礎から応用まで 野島 著 東京化学同人 (○)
- ・細胞の分子生物学 第6版 Alberts 他 著 ニュートンプレス (○)

授業計画・内容 /Class schedules and Contents

- 第 1回 遺伝子工学概論
- 第 2回 ノーベル医学生理学賞概説
- 第 3回 分子生物学復習 DNA・複製
- 第 4回 分子生物学復習 転写・翻訳
- 第 5回 遺伝子組換え DNAの性質・PCRによって
- 第 6回 遺伝子組換え プラスミド・制限酵素
- 第 7回 遺伝子組換え クローニング
- 第 8回 遺伝子組換え 遺伝子発現
- 第 9回 遺伝子組換え 組換え生物
- 第10回 遺伝子解析手法
- 第11回 遺伝子発現解析
- 第12回 RNA
- 第13回 遺伝子組換え作物
- 第14回 遺伝子工学演習 プラスミドの酵素処理
- 第15回 遺伝子工学演習|| 遺伝子組換え生物観察

成績評価の方法 /Assessment Method

積極的な授業参加・課題 40%

試験 60%

事前・事後学習の内容 /Preparation and Review

事前: 授業開始前に教科書の該当箇所を読んでおくこと(30分)。 事後: 授業後は、必ず復習し、問題集の該当箇所を解くこと(90分)。

遺伝子工学

(Genetic Engineering)

履修上の注意 /Remarks

生物学・生化学(基礎生化学・生化学)・分子生物学・生理学の知識が基礎となります。これらを履修しなおかつ理解していることが前提です。 。 座学だけで遺伝子工学を理解することは難しいため、簡単な演習も行います。

担当者からのメッセージ /Message from the Instructor

自分から積極的に学ぼうとする姿勢が大切です。是非この授業で遺伝子工学を学び、今後の研究に活用して下さい。

環境シミュレーション

(Environmental Computer Simulation)

/Instructor

野上 敦嗣 / Atsushi NOGAMI / 環境生命工学科 (19~)

履修年次 3年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance O Ο O O

対象学科 【選択】 エネルギー循環化学科 【選択必修】 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

·る。
課題の解決方法
_

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。

環境シミュレーション ENV310M

授業の概要 /Course Description

Excelのマクロプログラム(VBA)を使って、複雑と思われた自然現象や社会的事象が実は簡単な法則や規則の積み上げで起こることを理解する。身の回りにある様々な形(人工物や自然界にある不規則な形)や人間の記憶がコンピュータの中でどう表現するのかを学び、それらを動かす 基本的な法則やアルゴリズムを学習する。その際、フラクタルやモンテカルロ法などの確率論的な手法も重視する。自らプログラムを実行して 考察するアクティブラーニング教材を毎回用意しており、授業中の演習と宿題を行うことでシミュレーションの面白さを実感できる。

教科書 /Textbooks

講義資料配布

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

〇ハーベイ・ゴールド「計算物理学入門」および他の参考書は講義中に指示する。

授業中の演習や宿題に不可欠な部分は講義資料に含まれている。

授業計画・内容 /Class schedules and Contents

- 1 概要、計算機シミュレーションの歴史、オイラー法、ライフゲーム
- 2 差分法の簡単な例:コーヒーの冷却、差分法の誤差
- 3 粒子の運動(2体問題、3体問題):落下運動、惑星の運動
- 4 高精度差分法:高精度時間積分、価電子の運動
- 5 分子動力学法:多粒子系の動力学、平衡状態、相変態
- 6 幾何学的物体の表現法:メッシュ分割、立体の可視化
- 7 不定形物の表現法:画像、フーリエ変換、電子波動関数
- 8 非線形現象:カオス、ロジスティック曲線
- 9 中間試験
- 10 確率的現象:乱数、ランダムウォーク、拡散
- 11 モンテカルロ法:サイコロ積分、最適化問題、光線の屈折
- 12 フラクタル:自己相似性、フラクタル次元、DLAクラスター
- 13 複雑性:セルラーオートマトン、臨界現象、人工生命
- 14 複雑性:神経回路網
- 15 全く異なる計算モデル:生態系、銀河系 ~まとめ

成績評価の方法 /Assessment Method

毎週の宿題及び授業内演習 40%

中間試験 30%

期末試験 30%

環境シミュレーション

(Environmental Computer Simulation)

事前・事後学習の内容 /Preparation and Review

配布資料をしっかり読んで、毎回の宿題を必ず自力で行うこと。宿題の返却時に復習を兼ねて解説を行うので、もう一度配布資料を読み直して 、演習・宿題で行ったシミュレーションプログラムの内容を完全に理解すること。

履修上の注意 /Remarks

本授業の宿題はExcelおよびExcelマクロ(Visual Basic)を用いる。毎回の宿題を必ず自分で行い、授業の内容を反復すること。初回の授業概要 説明で各回の授業に対応する参考書の章・節を提示するので、参照し準備すること。

担当者からのメッセージ /Message from the Instructor

コンピュータの中に身の回りの自然現象や人間の社会システムを再現する基本的なモデルをゲーム感覚で学んでください。これにより、コンピュータによる思考実験の結果を価値判断できるセンス(何が使える情報で、何が使えないのか)を養ってほしい。

キーワード /Keywords

コンピュータシミュレーション、計算物理学、生態系シミュレーション

環境リスク学

(Environmental Risk Management)

担当者名 二渡 了 / Tohru FUTAWATARI / 環境生命工学科(19~), 門上 希和夫 / Kiwao KADOKAMI / 環境技術研究

/Instructor 所

履修年次 3年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2018 対象入学年度 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2019 /Year of School Entrance O Ο O O

対象学科 【選択】 エネルギー循環化学科 【選択必修】 環境生命工学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位	学位授与方針における能力			到達目標	
知識・理解	専門分野の知識・理解				
技能	専門分野のスキル	•	化学物質等に関する環境リスクを語 うための専門知識・技能を修得する	P価し、管理し、関係者とのコミュニケー 5。	-ションを行
田子、小胖、丰田	課題発見・分析・解決力				
思考・判断・表現 	ブレゼンテーション力				
	実践力(チャレンジ力)				
関心・意欲・態度	社会的責任・倫理観	•	環境リスクに関する知識を正しく理 もリスク管理を適切に行えるように	解し、企業や行政の立場だけでなく市 なる。	その立場から
	生涯学習力	•	常に更新される化学物質等に関する するようになる。	有害情報や管理方法に関心を持ち、自然	Sアブローチ
	コミュニケーション力				
ツ煙袋よる子営利団をお告け、営仕袋に子供におけるがより			+ > 7 48 + + +	理控计与方管	ENITOO 1 M

※環境生命工学科以外の学生は、学位授与方針における能力が異なる場合があります。

環境リスク学 ENV321M

授業の概要 /Course Description

有害化学物質や重金属などの環境汚染物質のリスクを正しく評価・理解して適切に選択・行動できるだけでなく、情報を正確に伝える技術が必要である。日常行動に伴うリスク、化学物質のリスクなどを例にとり、リスクの大きさに基づいて行動する重要性を認識する。さらに、人の健康リスクを評価するための有害性評価、暴露評価、リスク評価の手法について学び、化学物質管理やリスクコミュニケーションの事例を通して学習する。

教科書 /Textbooks

プリントを配布する

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

吉田喜久雄・中西準子「環境リスク解析入門[化学物質編]」東京図書、2800円

矢野昌彦「リスクマネジメント・システム」大阪大学出版会、東海明宏・岸本充生・蒲生昌志「環境リスク評価論」大阪大学出版会、中西準子 他「演習環境リスクを計算する」岩波書店、ほか講義中に紹介する。

授業計画・内容 /Class schedules and Contents

- 1 環境リスクと化学物質のリスク
- 2 リスクアセスメント
- 3 リスクアセスメントの事例
- 4 化学物質のリスクアセスメントとデータ
- 5 化学物質の有害性確認と用量反応関係
- 6 化学物質の暴露解析
- 7 リスク判定
- 8 生態リスク解析
- 9 化学物質のリスク計算1(演習)
- 10 化学物質のリスク計算2(演習)
- 11 リスクマネジメント
- 12 リスクコミュニケーション
- 13 リスクアセスメントのためのシステム
- 14 社会経済分析・費用効果分析
- 15 環境リスクと企業活動、まとめ

成績評価の方法 /Assessment Method

積極的な授業参加 20%

小テスト・レポート 20%(上記5~10の授業では,1回前の授業内容に関するミニテストを実施する。)

期末試験 60%

環境リスク学

(Environmental Risk Management)

事前・事後学習の内容 /Preparation and Review

日常生活の中で環境リスクに関する事項に関心を持つこと。例えば、ニュースや新聞記事に日頃から注意する。 授業の開始時に、前回の授業内容に関する小テストを行うので、予習復習を行っておくこと。 レポート課題については、各自で企業の取組・活動を調べ、提出すること。

履修上の注意 /Remarks

説明が分からなかったところはそのままにせずに、教員への質問や復習をすること。

担当者からのメッセージ /Message from the Instructor

化学物質を扱う企業だけでなく、一般環境や日常生活の中にも環境リスクは存在する。国際社会・地域社会における環境リスクの評価や管理の 方法を学びたいという学生を歓迎する。

キーワード /Keywords

化学物質 リスクアセスメント リスクマネジメント リスクコミュニケーション

卒業研究

(Graduation Research)

担当者名 エネルギー循環化学科全教員(○学科長)

/Instructor

履修年次 4年次 単位 8単位 学期 通年 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度
/Year of School Entrance

2014 2018 2010 2011 2012 2013 2015 2016 2017 2019 0 \circ O O O O

対象学科 【必修】 エネルギー循環化学科

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	専門分野の知識・理解	•	与えられた研究課題の背景の知識を得ると共に、関連する諸問題を化学的見地から理解 する。
技能	専門分野のスキル		与えられた研究課題を解決するための実験手法を探る技能を身につけると共に、それら を具現化する実験技術を修得する。
	課題発見・分析・解決力	•	与えられた研究課題の本質を的確に捉える思考力を修得する。
思考・判断・表現	ブレゼンテーション力	•	与えられた研究課題に対する自分の考え方や研究成果を正確に表現する能力を修得する。
	実践力(チャレンジ力)	•	与えられた研究課題を解決する意欲と行動力を身につける。
 関心・意欲・態度	社会的責任・倫理観	•	化学技術者としての社会的責任感と倫理観を身につける。
171.0. 1920V 18138	生涯学習力		
	コミュニケーション力	•	他者と協力して課題を解決するためのコミュニケーション力を身につける。

卒業研究【化学】 STH410M

授業の概要 /Course Description

「卒業研究」は学部4年間の集大成である。これまで学習してきた知識や考え方を基にして、与えられた研究テーマについて、研究者倫理に関する規範意識を高めつつ、研究目標及び計画の立案、調査および実験の実施等を行い、その結果を論文としてまとめ発表を行う。この卒業研究を通して、課題解決の手法を身につけ、その結果を第3者に伝える総合的な表現力を養う。

教科書 /Textbooks

各指導教員に従う

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

各指導教員に従う

授業計画・内容 /Class schedules and Contents

4月 ガイダンスおよび研究テーマ決定、研究者倫理教育

5月~実施: 各指導教員の指示に従う (研究目標および計画の立案、調査、実験、討論など)

2月 卒業論文作成

卒業論文提出

卒業論文試問

卒業研究発表会

指導教員の判断でゼミ合宿を行うことがある。

成績評価の方法 /Assessment Method

卒業研究実施状況、卒業論文、試問、および発表会の結果を総合して評価する。

事前・事後学習の内容 /Preparation and Review

各指導教員に従う

履修上の注意 /Remarks

各指導教員の指示に従い、安全に注意すること。

履修ガイドに記載のエネルギー循環化学科の卒業研究着手要件を満たしていること。

担当者からのメッセージ /Message from the Instructor

これまでの座学や学生実験などの授業で学んだ知識・考え方を駆使し、常に能動的な態度で成し遂げてください。

卒業研究【基盤】

(Graduation Research)

担当者名 基盤教育センターひびきの分室教員

/Instructor

履修年次 4年次 単位 8単位 学期 通年 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

2013 2014 2015 2016 2018 対象入学年度 2008 2009 2010 2011 2012 2017 2019 /Year of School Entrance \circ \circ \circ Ο O \circ

対象学科 【必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命エ学科

/Department

※お知らせ/Notice 単位数は各学科の卒業研究にならう

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

4方針における能力		到達目標
総合的知識・理解	•	専門工学と他の専門分野との学際領域に通じる知識を獲得し、理解できるようになる。
情報リテラシー	•	研究活動に必要な情報を検索し、必要に応じて取捨選択できるようになる。
数量的スキル	•	統計解析に手法を用いて、研究データの解析を行えるようになる。
英語力	•	研究に関連する英語文献を読みこなし、表現できるようになる。
課題発見・分析・解決力	•	実社会の課題を見つけだし、学際的な観点から分析し、解決策を提出できるようになる。
自己管理力	•	研究テーマを主体的に発見し、必要な調査・分析・考察に取り組めるようになる。
社会的責任・倫理観	•	研究資料や調査データについて、法令を遵守し、公序良俗に沿った運用ができるように なる。
生涯学習力	•	研究テーマに関連する他の課題に関心を持ち、継続的に取り組めるようになる。
コミュニケーション力	•	様々な関係者と意見を交換しながら、研究活動を進められるようになる。
	総合的知識・理解 情報リテラシー 数量的スキル 英語力 課題発見・分析・解決力 自己管理力 社会的責任・倫理観 生涯学習力	総合的知識・理解 情報リテラシー 数量的スキル 英語力 課題発見・分析・解決力 自己管理力 社会的責任・倫理観 生涯学習力 ・

※所属学科以外での研究分野を取り込みながら卒業研究を行うための条件は、履修ガイドで確認のうえ、所属学科の学科長または担当教員に事前に相談してください。

卒業研究【基盤】

STH410M

授業の概要 /Course Description

学部 4 年間の学習の集大成として、人文社会と工学の接点に関わる研究テーマに取り組む。研究テーマに合わせた実験、調査、レポート、論文作成を通じて、科学的に事象を検証し、整理・発表する能力を養う。また指導教員の判断でゼミ合宿を行うことがある。

教科書 /Textbooks

各研究室の指導による。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

各研究室の指導による。

授業計画・内容 /Class schedules and Contents

(1)研究室配属

3年次3月末を目処に、教員との面接によって履習可否を決定する。

(但し、所属学科の都合により4月に面接を行うこともある)

(2)研究活動

卒業研究は、おおむね次のように進められる。詳しくは、指導教員の指示を受けること。

4月 研究テーマの絞り込み、文献調査など

5月-6月 研究準備および計画の策定

7月-12月 研究の実施・遂行

1月 口頭発表、試問 (学生の所属学科での発表が課される場合がある)

成績評価の方法 /Assessment Method

研究への取り組み姿勢:30%

研究成果:50% 口頭発表及び試問:20%

事前・事後学習の内容 /Preparation and Review

各研究室の指導による。

卒業研究【基盤】

(Graduation Research)

履修上の注意 /Remarks

様々なメディアを活用して、また、フィールド調査などを通じて、自分の研究に関わる情報収集に取り組むこと。

担当者からのメッセージ /Message from the Instructor

池田:環境工学に関わる分野で必要とされる日本語表現とはどういうものでしょうか。教育や研究に直結する目的でなくても追求すべき言語行 為は存在しています。 専門分野における日本語運用の意義とは何かを考えていきましょう。

植田:私たちの思考や認識と切り離すことができない「ことば」は言葉の研究にとどまらず、さまざまな分野で注目を集めています。たとえば、GUIベースのOSの背後にはデスクトップメタファーがあることがよく知られています。テクノロジーを支えていることばを探求してみましょう。

中岡:興味のあるテーマを追求する中で、考えることのおもしろさ、達成感を共に味わいましょう。単に「調べる」「書く」だけでなく、「ま とめる」「表現する」技も磨いて行きます。アジア地域に関すること、また経済全般に関心のある方、歓迎いたします。

森本:これまでの各学科の学習内容と環境倫理学とを関連づけて、各自でテーマを検討してください。卒業研究を通して、情報をただ収集する だけでなく、関連づけて分析する仕方、それを理解しやすい形に表現する仕方を学習しましょう。

辻井:環境問題を機会として、企業はどのような経営改善や新規ビジネスの開発に取り組んでいるのでしょうか。環境規制や消費者動向は、企業の環境ビジネスや関連技術開発にどのような影響を与えているのでしょうか。日本国内だけでなく、海外の環境経営では、どのような取り組みがなされているのでしょうか。企業は、環境問題を踏まえ、組織のあり方や組織間関係、経営戦略をどのように転換して来ているのでしょうか。また、果たして今日の資本主義に則った経済や企業運営は、環境問題の解決を導きうるのでしょうか。関連する統計の解析、企業の事例検討、経営者などへのインタビュー調査を通じて、これらの疑問に取り組みます。

キーワード /Keywords

池田:専門日本語、日本語運用、非母語話者、母語話者、アカデミック・ジャパニーズ

植田:認知言語学、推論、メタファー、テクノロジー

中岡:アジア、中国、経済、日本経済

森本:環境倫理、功利主義、問題対応(問題発見、問題表現)

辻井:環境経営、企業社会責任

日本事情

(Aspects of Japanese Society Today)

池田 隆介 / Rvusuke IKEDA / 基盤教育センターひびきの分室

/Instructor

履修年次 1年次 単位 1単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2014 2018 対象入学年度 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 /Year of School Entrance

対象学科 【必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

 \circ

O

Ο

O

O

Ο

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標
知識・理解	総合的知識・理解	•	日本の表層文化のみならず、その根柢に潜在する深層文化をも理解し、日本社会におい て自信を持って生活することができる。
	情報リテラシー		
技能	数量的スキル		
	英語力		
思考・判断・表現	課題発見・分析・解決力		
	自己管理力		
	社会的責任・倫理観		
関心・意欲・態度	生涯学習力		卒業後も良識ある社会人として日本社会に参画できるよう、日本文化に関する深い知識 の探求を持続することができる。
	コミュニケーション力	•	日本人と相互に理解し合えるように、日本人の考え方を知り、異文化において自分を活かせるコミュニケーション方法を習得する。

日本事情 JPS100F

授業の概要 /Course Description

この授業では、外国人学生が日本に関する知識を学ぶだけではなく、深層文化である日本人の考え方、観念などに関しても考え、主体的に日本 の文化・社会に参加し、かつ日本風に主張もできる能力を身に付けることを目指す。現代日本の文化・社会に関するテーマについて討論し理解 を深め、異文化間コミュニケーションが円滑に行なえるようにする。授業の中で、日本人学生や地域の人々を招き興味あるテーマに関して討論 会なども行い、日本人との交流を通して学ぶ。

教科書 /Textbooks

教科書『文化の壁なんてこわくない』(水本光美・池田隆介)を使用。初回授業で配布・販売。1,000円/冊。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

ホームページの教材 http://lang.is.env.kitakyu-u.ac.jp/~nihongo/

授業計画・内容 /Class schedules and Contents

- 1 オリエンテーション&クラスのマナーについて
- 2 時間の感覚 1:パーティに呼ばれたら
- 3 時間の感覚2:生き残るためのキャンパス術
- 4 病気・ケガ対処法:健康保険は払えば得する
- 5 事故の対処法:交通規則を知っている?
- 6 お礼・お詫び:日本人は1回だけじゃない
- お願い:保証人と推薦状
- 8 不正行為1:たった1回が命取り
- 9 不正行為2:コピーは犯罪
- 10 社交術 1:日本人と上手に付き合うには
- 11 社交術2:本音と建前
- 12 ゲスト大会:日本人と話し合って日本を知ろう!
- 13 金銭感覚
- 14 プロジェクトワーク(スキット大会)の準備
- 15 プロジェクトワーク (スキット大会)
- ※予定は変更されることもあるので、授業中の連絡に注意すること。

日本事情

(Aspects of Japanese Society Today)

成績評価の方法 /Assessment Method

積極的授業参加(討論含む) 30%

宿題 & 課題 20%

(作文・発表準備を含む)

小テスト 30%

プロジェクトワーク発表 20%

事前・事後学習の内容 /Preparation and Review

授業中の配布物やMoodleにより告知していく。

履修上の注意 /Remarks

テーマにそった読み教材やビデオがある場合は、必ず、予習してくること。

ビデオ教材は「留学生のホームページ」 http://lang2.env.kitakyu-u.ac.jp/~nihongo/ 参照。

担当者からのメッセージ /Message from the Instructor

現在の日本に関する様々な知識を学びながら日本人、日本文化をより深く理解しましょう。異文化の中にありながら自分らしさを失わずに上手 に異文化コミュニケーションをする方法を身につけ、今後の留学生活を楽しく有意義なものにしましょう。

キーワード /Keywords

日本事情、留学生、大学生、規律、異文化、現代

留学生特別科目 基盤・外国語教育科目読替

(Integrated Advanced Japanese A)

担当者名 池田 隆介 / Ryusuke IKEDA / 基盤教育センターひびきの分室

/Instructor

履修年次 1年次 単位 2単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2012 2013 2014 2015 2016 2018 2008 2009 2010 2011 2017 2019 /Year of School Entrance 0 \circ Ο O O

対象学科 【選択必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学

/Department
[₹]

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標	
知識・理	里角军	総合的知識・理解		
		情報リテラシー	•	必要な情報を適切な手法で収集し、正確に理解するための日本語能力を身につける。
技能		数量的スキル		
		英語力		
思考・判	断・表現	課題発見・分析・解決力		
		自己管理力		
		社会的責任・倫理観		
関心・意欲・態度	生涯学習力	•	卒業後も、様々な状況で応用可能なアカデミック・ジャパニーズ能力を習得する。	
		コミュニケーション力	•	留学生が大学生活に適応するために必要な日本語能力を総合的に身につける。

総合日本語 A JSL100F

授業の概要 /Course Description

一般的な日本語でのコミュニケーション能力を向上させ、話す聴く読む書くの 4 技能を上級の中レベル以上に発達させることが、大学生活を円滑に送るために必須の日本語能力である。この授業では、日本語能力試験N1(かつての「1級」)レベルの留学生を対象に、長文をできるだけ短時間で、かつ、正確に理解する訓練を繰り返し行い、また、単語・文の羅列ではなく、段落レベルのまとまった文章をある程度コントロールできるレベルの作文能力を身に着けることを目指す。

教科書 /Textbooks

教科書『総合日本語A』(池田隆介) 初回授業で配布・販売。1,000円/冊。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中に指示する。

総合日本語A

(Integrated Advanced Japanese A)

授業計画・内容 /Class schedules and Contents

- 1. 論理的な文章の書き方(1)【書き言葉】
- 2. 論理的な文章の書き方(2)【「は」と「が」の区別】
- 3. 論理的な文種の書き方(3)【文の名詞化】
- 4 . メールのマナー・Mailの使い方
- 5.日本語ワープロの基本・Wordの使い方
- 6. プレゼンテーション用のソフトウエア
- 7.発表(1)【ミニ発表会プロジェクトの説明】
- 8.発表(2)【新聞から情報を集める】
- 9.発表(3)【資料の収集・出典明記】
- 10 発表(4)【事実と意見】
- 11.発表(5)【発表でよく使う表現】
- 12 発表(6)【新聞音読/資料の精読と理解】
- 13.発表(7)【PowerPointにおける日本語表現】
- 14.発表(8)【司会・進行】
- 15.発表(9)【ミニ発表会】
- 16.中間試験
- 17.読解ユニット1「環境と経済」(1)【読む前に】
- 18.読解ユニット1「環境と経済」(2)【文法・重要表現】
- 19.読解ユニット1「環境と経済」(3)【精読:自然破壊をともなう経済発展】
- 20.読解ユニット1「環境と経済」(4)【精読:リービッヒの循環論、理解チェック】
- 2 1 . 読解ユニット 2 「バイオマスエネルギー」(1) 【読む前に】
- 22.読解ユニット2「バイオマスエネルギー」(2)【文法・重要表現】
- 23. 読解ユニット2「バイオマスエネルギー」(3)【精読:バイオマスエネルギーとは】
- 2 4 . 読解ユニット 2 「バイオマスエネルギー」(4)【精読:各国のバイオマス事情、理解チェック】
- 25.読解ユニット3「敬語に関する調査」(1)【読む前に】
- 26.読解ユニット3「敬語に関する調査」(2)【文法・重要表現】
- 27.読解ユニット3「敬語に関する調査」(3)【精読:人間関係と敬語・場面と敬語】
- 28.読解ユニット3「敬語に関する調査」(4)【精読:敬語の正誤、理解チェック】
- 29.プロジェクトワークのための質疑応答
- 30.口頭能力測定(会話試験)

※実際の授業においては、発表のための課題、読解のための課題が適度なバランスになるように順序を調整する。授業中の連絡に注意すること 。

成績評価の方法 /Assessment Method

積極的な授業参加 10%

小テスト 10%

宿題 10%

作文・発表 10%

口頭試験 10%

中間試験 10%

期末試験 40%

※出席率80%未満は不合格とする。

事前・事後学習の内容 /Preparation and Review

授業中の配布物やmoodleにより告知していく。

履修上の注意 /Remarks

テストや授業のために必要な準備は、学習支援システム(New Moodle)で連絡する。重要な連絡にはE-Mailも使う。それ故、moodleを閲覧する 習慣、及び、メールチェックをする習慣を身につけておくこと。予定の確認作業は受講者の責任である。

プレイスメントテストにおいて日本語能力試験1級レベルと認められた学生、または、「総合日本語基礎」に合格した学生のみを対象とする。 毎回の授業に参加するには、指定された事前学習を行ってくること。学習内容は毎回moodleによって告知するので確認を忘れずに。「小テスト 」を予告している回もあるので、指定された範囲を事前に勉強してから授業に参加すること。

また、授業後の作業には、授業を通じて課された宿題を行い、締切日までに提出できるようにしておくこと。また、返却された宿題・テストなどの内容を確認し、「再提出」の指示がある場合は締切日までに対応すること。減点された箇所の理由が分からない場合は、質問に来なさい。

担当者からのメッセージ /Message from the Instructor

日常的な表現も、論理的な表現も、繰り返し使用するほどに運用の力は向上していく。この授業は論理的な日本語表現の基礎になる部分を学ぶ 貴重な機会となるので、積極的に授業に参加してほしい。

キーワード /Keywords

上級日本語、書き言葉、アカデミックジャパニーズ、環境工学系読解教材、プレゼンテーション

総合日本語B

(Integrated Advanced Japanese B)

担当者名 池田 隆介 / Ryusuke IKEDA / 基盤教育センターひびきの分室

/Instructor

履修年次 1年次 単位 2単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2012 2013 2014 2015 2016 2018 2019 2008 2009 2010 2011 2017 /Year of School Entrance 0 \circ Ο Ο Ο

対象学科 【選択必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学

/Department **

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標 / Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標	
知識・理解		総合的知識・理解		
1+44		情報リテラシー	-	得られた情報を適切な手法を用いて誤解なく他者に伝達するための日本語能力を身につける。
TXHE		数量的スキル		
		英語力		
思考・判断・	表現	課題発見・分析・解決力		
		自己管理力		
		社会的責任・倫理観		
関心・意欲・態度	態度	生涯学習力	•	やや複雑で困難な課題にも対処し得るだけのアカデミック・ジャパニーズ能力を習得する。
		コミュニケーション力	•	留学生が大学生活を円滑に進めるために必要な日本語能力を総合的に身につける。

総合日本語B JSL110F

授業の概要 /Course Description

「総合日本語B」では、日本語能力試験1級レベルの留学生を対象に、複雑な状況、緊張感を伴う場面においても、最低限のタスクを遂行できる 会話能力を養成し、また、段落レベルのまとまった文章をある程度コントロールしながら運用する訓練を繰り返し行っていく。この授業を通じ て、日本語を使って積極的に情報発信を行い得る能力と、積極的に問題提起を行える態度を養成することで、日本語を「運用」できる範囲を広 げていくことが、受講生の主な目的となる。

教科書 /Textbooks

『総合日本語B』(池田隆介) 初回授業で配布・販売する。1,000円/冊。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

授業中に指示する。

総合日本語B

(Integrated Advanced Japanese B)

授業計画・内容 /Class schedules and Contents

- 1.オリエンテーション/授業のルール
- 2.レポートの書き方(1)【「留学生日本語コンテスト」概要説明】
- 3.レポートの書き方(2)【段落】
- 4.レポートの書き方(3)【レポートの構成】
- 5.レポートの書き方(4)【文の首尾一貫性】
- 6 レポートの書き方(5)【引用】
- 7.レポートの書き方(6)【レポートとプレゼンテーション】
- 8.上級聴解(1)【ディクテーション/不正確な発話の理解】
- 9.上級聴解(2)【文体の変換:話し言葉から書き言葉へ、書き言葉から話し言葉へ】
- 10.討論(1)【「討論会」概要説明】
- 11.討論(2)【「読んで理解すること」と「聞いて理解すること」の違い】
- 12.討論(3)【聞き手への配慮/聞き手の集中力を考えた構成】
- 13.討論(4)【分かりやすいプレゼンテーションとは?】
- 14.討論(5)【視覚効果の活用】
- 15.討論(6)【積極的な質疑応答、質問のトリプルパンチ】
- 16. 討論会
- 17. 中間試験
- 18.読解ユニット1『納豆が砂漠を緑化する』(1)【文法・重要表現】
- 19. 読解ユニット 1 『納豆が砂漠を緑化する』(2)【VTR】
- 20.読解ユニット1『納豆が砂漠を緑化する』(3)【精読(レジュメ作りと発表):原助教授と納豆との出会い他】
- 21.読解ユニット 1『納豆が砂漠を緑化する』(4)【精読(レジュメ作りと発表):砂漠緑化への第一歩他、理解チェック】
- 22. 読解ユニット 2 『環境問題の錯覚』(1)【文法・重要表現】
- 23.読解ユニット2『環境問題の錯覚』(2)【第1節 精読(レジュメ作りと発表):持続可能なエネルギーはない】
- 24.読解ユニット 2 『環境問題の錯覚』(3)【第2節 精読(レジュメ作りと発表):石炭と石油が自然環境を救った】
- 25.読解ユニット 2 『環境問題の錯覚』(4)【第3節 精読(レジュメ作りと発表):なぜアメリカがバイオ燃料に力を注ぐのか】
- 26.読解ユニット2『環境問題の錯覚』(5)【第4節 精読(レジュメ作りと発表):理解チェック】
- 27. 読解ユニット 3 『知的資産を保存せよ』(1)【文法・重要表現】
- 28.読解ユニット3『知的資産を保存せよ』(2)【精読(レジュメ作りと発表):20世紀が「知の空白期」に?他】
- 29.読解ユニット3『知的資産を保存せよ』(3)【精読(レジュメ作りと発表):電子図書館化で追い打ち 他、理解チェック】
- 30.読解ユニットの振り返り

※実際は、作文・プレゼン関係の授業、読解関係の活動をバランス良く配置した順序で展開する。授業中、及び、moodle上の連絡事項に注意すること。

成績評価の方法 /Assessment Method

積極的な授業参加 10%

小テスト 10%

宿題 10%

作文 10%

討論会 10% 中間試験 10%

期末試験 40%

※出席率80%未満は不合格とする。

事前・事後学習の内容 /Preparation and Review

授業中の配布物やMoodleにより告知していく。

履修上の注意 /Remarks

テストや授業のために必要な準備は、hibikino e-learning portalで連絡する。重要な連絡にはE-Mailも使う。それ故、moodleを閲覧する習慣、及 び、メールチェックをする習慣を身につけておくこと。予定の確認作業は受講者の責任である。

プレイスメントテスト等によって日本語能力試験1級レベルと認められた学生、または、「総合日本語A」に合格した学生のみを対象とする。 毎回の授業に参加するには、指定された事前学習を行ってくること。学習内容は毎回moodleによって告知するので確認を忘れずに。「小テスト 」を予告している回もあるので、指定された範囲を事前に勉強してから授業に参加すること。

また、授業後の作業には、授業を通じて課された宿題を行い、締切日までに提出できるようにしておくこと。また、返却された宿題・テストなどの内容を確認し、「再提出」の指示がある場合は締切日までに対応すること。減点された箇所の理由が分からない場合は、質問に来なさい。

担当者からのメッセージ /Message from the Instructor

やや専門的な内容の日本語資料を正確に理解し、さらに、それを周囲に伝達できる能力を育成するための授業である。教員の指示を待つだけでなく、自分から積極的に問題提起をし、議論を進めていく積極的な姿勢の学生を歓迎する。

キーワード /Keywords

上級日本語、文レベルから段落レベルへ、情報発信、討論、ディクテーション、作文

技術日本語基礎

(Introduction to Technical Japanese)

池田 隆介 / Rvusuke IKEDA / 基盤教育センターひびきの分室

/Instructor

履修年次 2年次 単位 1単位 学期 1学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 2012 2013 2014 2015 2016 2018 2008 2009 2010 2011 2017 2019 /Year of School Entrance \circ O Ο O O

対象学科 【選択必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学

/Department

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy" (Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力			到達目標		
知識・理解	総合的知識・理解				
技能	情報リテラシー	•	一般的な科学理解に必要な日本語に	よる基礎的情報収集能力を習得する。	
	数量的スキル				
	英語力				
思考・判断・表現	課題発見・分析・解決力				
関心・意欲・態度	自己管理力				
	社会的責任・倫理観				
	生涯学習力	•	生涯にわたり科学技術を学ぶために必要な日本語能力を習得する。		
	コミュニケーション力	•	理系のアカデミックライフにおいて、日本語を用いた円滑なコミュニケーションを実現する能力を習得する。		/ョンを実現

JSL230F 技術日本語基礎

O

授業の概要 /Course Description

主に、環境工学と情報技術に関するテーマを扱った放送番組や新聞記事など、本工学部の全5学科に対応する内容の教材を扱いながら、理系の 語彙増強と書き言葉の表現能力および聴解力の向上を目指す。また、著作物の引用や参考文献の書き方などを学び、専門科目のレポートや卒業 論文の執筆の基礎能力を養成する。

<主な目的>

- (1)理系語彙増強
- (2)説明文の文構造、段落構造、文体、表現の特徴の把握
- (3)複段落単位の説明文の記述
- (4)説明文を要約し複段落で口頭説明
- (5)理系語彙を含む聴解力増強
- (6)著作物の引用方法と参考文献の書き方

教科書 /Textbooks

- 1.『技術日本語への架け橋(改訂版)』, 水本光美・池田隆介, 北九州市立大学基盤教育センターひびきの分室・日本語教育プログラム, 2011. ← 初回授業で配布する。
- 2. ホームページ「技術日本語基礎」のビデオ教材←授業で説明する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

DVD『HAYABUSA Back to the Earth』はやぶさ大型映像制作委員会(有限会社ライブ 2011年)。詳細は授業中に説明する。

留学生特別科目 基盤・外国語教育科目読替

技術日本語基礎

(Introduction to Technical Japanese)

授業計画・内容 /Class schedules and Contents

- 1 ①Orientation ②北九州エコタウン 1
- 2 ①北九州エコタウン2 ②改まったスタイル1
- 3 ①改まったスタイル2 ②改まったスタイル3
- 4 段落構成
- 5 WTCビル崩壊の謎
- 6 植物で土壌を蘇らせる
- 7 ①引用の仕方 ②出典や参考文献の書き方
- 8 改まったスタイル4:書き言葉表現
- 9 二酸化炭素隔離技術 1:地球温暖化対策、二酸化炭素隔離研究
- 10 二酸化炭素隔離技術 2:二酸化炭素海洋隔離
- 11 ロボット世界1:ロボットの用途
- 12 ロボット世界2:人間型ロボット
- 13 はやぶさの挑戦 1:はやぶさの偉業と旅の道筋
- 14 はやぶさの挑戦 2:イオンエンジンの開発とイトカワ着地
- 15 はやぶさの挑戦3:様々な困難を克服して地球帰還
- ※ 予定は変更されることもあるので、授業中の連絡に注意すること。
- ※ 試験期間中に、期末試験を行う。

成績評価の方法 /Assessment Method

積極的な授業参加 20%

宿題 30%

小テスト 20%

期末試験 30%

※ 出席率80%未満は不合格とする。

事前・事後学習の内容 /Preparation and Review

授業中の配布物やMoodleにより告知していく。

履修上の注意 /Remarks

授業で扱うビデオは、「留学生のホームページ」にアクセスして、必ず予習してくることが必要である。

URL: http://lang2.env.kitakyu-u.ac.jp/~nihongo/

詳細は別途配布の「授業概要」を参照。

- 1. 留学生のうち、「総合日本語A」または「総合日本語B」に合格した学生対象の専門技術日本語入門コースである。それ以外の受講希望者に関 しては日本語担当教員からの許可を得ること。
- 2. Hibikino e-Learning Portal (moodle)への登録必須。
- 3. 学術情報センターの講義室、あるいは、CAI室を利用する機会があるかもしれない。利用のために必要な自分のIDとパスワードを確認しておく こと。

担当者からのメッセージ /Message from the Instructor

皆さんが工学部で専門分野や環境問題に関する知識を得るために最低知っていなくてはならない理系の基礎的で、一般的な語彙やレポートや論 文に必要な表現法を学びます。また、一般の成人向け科学番組を視聴し内容を理解することにより、アカデミック聴解力を養います。予習や宿 題が重要な授業ですので、十分な準備をして、授業に臨んでください。

キーワード /Keywords

環境工学, 情報技術, 科学番組, 理系語彙増強, 表現力, 書き言葉, 聴解能力向上

ビジネス日本語

(Business Japanese)

担当者名 水本 光美 / Terumi MIZUMOTO / 非常勤講師

/Instructor

履修年次 3年次 単位 1単位 学期 2学期 授業形態 演習 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2018 2010 2011 2012 2013 2015 2016 2017 2019 \circ 0 \circ O O \circ

対象学科 【選択必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科, 環境生命工学

/Department 料

※お知らせ/Notice 第2学期のみの開講となりますので注意してください。

授業で得られる「学位授与方針における能力(学生が卒業時に身に付ける能力)」、到達目標

/ Competence Defined in "Diploma Policy"(Competence Students Attain by Graduation), Specific Targets in Focus

学位授与方針における能力				到達目標
知識・	理解	総合的知識・理解		
技能	情報リテラシー			
	数量的スキル			
	英語力			
思考・	判断・表現	課題発見・分析・解決力		
関心・意欲・態度	自己管理力		自己を正しく分析し、自らの能力を効果的にアビールでき、主体的に就職活動への準備ができる。	
	社会的責任・倫理観			
	生涯学習力	•	就職後も使えるビジネス日本語能力および問題解決能力を習得する。	
		コミュニケーション力	•	就職活動および入社後に求められる日本語によるコミュニケーション能力を習得する。

ビジネス日本語 JSL340F

授業の概要 /Course Description

大学卒業後に日本国内の企業、あるいは母国の日系企業で活躍したいと希望している留学生のための上級日本語レベルの授業である。日本企業への就職を希望する留学生には、専門知識や技術のみならず高度な日本語コミュニケーション能力が求められている。この授業では主に就職活動に必要な日本語表現を、言語の 4 技能「聴く」「話す」「読む」「書く」などのトレーニングを通し、現場で即座に生かせる運用能力を育成する。

教科書 /Textbooks

- 1. 成美堂出版編集部「21年版 こう動く!就職活動のオールガイド」
- 2. 映像教材: 「就職活動のすべて」日本経済新聞出版社, 2007.
- 3. その他、適宜授業中に配布

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

Web: 『留学生のためのページ』の「ビジネス日本語」← 授業で説明する

授業計画・内容 /Class schedules and Contents

- 1 ①オリエンテーション ②就活に求められる日本語能力
- 2 己を知る:自己分析, 自己評価, 就活プラン1(企業が求める日本語能力・就職活動の流れ)
- 3 己を知る:自己分析, 自己評価, 就活プラン2(効果的な自己分析・キャリアプラン)
- 4 業界・企業を知る:企業選びへの業界調査
- 5 情報収集, 問い合わせの日本語(敬語)&マナー1:問い合わせ方法
- 6 情報収集 問い合わせの日本語(敬語)&マナー2:資料請求葉書とメール
- 7 就職筆記試験:Web, SPI, CAB/GAB & 一般常識
- 8 己を知る:自己PR,志望動機, 将来設計など
- 9 就活アクション:履歴書&エントリーシート1(エントリーシートの基本常識と書き方)
- 10 就活アクション:履歴書&エントリーシート 2(履歴書、三大質問などの書き方)
- 11 就活アクション:履歴書&エントリーシート 3 (送付状、封筒の書き方)
- 12 就活アクション:会社説明会・セミナー参加
- 13 就活アクション:面接 1(面接のマナーとよく聞かれる質問)
- 14 就活アクション:面接 2(回答のポイント・面接シミュレーション)
- 15 まとめ
- ※ この授業計画は状況に応じて随時変更する可能性もある。

留学生特別科目 基盤・外国語教育科目読替

(Business Japanese)

成績評価の方法 /Assessment Method

- 1. 積極的授業参加 20%
- 2. 宿題 & 小テスト 50%
- 3. 期末試験(会話試験:就活の面接形式)30%

※出席率80%未満は不合格とする。

事前・事後学習の内容 /Preparation and Review

教科書の範囲を読み、分からない漢字や意味を調べて内容を理解するように予習する。

授業内容に基づく課題(書く宿題やビデオ視聴など)をする。

履修上の注意 /Remarks

- 1. 履修希望者は、「総合日本語A」「総合日本語B」「技術日本語基礎」のうち3単位以上を取得しておかなければならない。それ以外の受講 希望者に関しては、受講申告前に授業担当教員に相談必要。
- 2. 学部で就活をする学生は、3年次の後期に履修するのが望ましい。大学院へ進学後就活する学生は3年次か4年次の後期の受講でも良い。
- 3. 受講生は、学習支援システム(Moodle) に登録する必要がある。
- 4. 授業前に教科書を予習し、授業後には課題をして期限までに提出する必要がある。

担当者からのメッセージ /Message from the Instructor

卒業後、日本企業への就職を考えている留学生の皆さん、就職活動をし社会人となるために、自分の日本語能力に自信がありますか。適切な敬 |語を使って話したり、書いたりすることに対する準備はできていますか。昨今の就職難の状況下では、就活時期(3年生の3月から開始)が始ま ってから就活準備を開始するのでは遅すぎます。就活時期以前の出来るだけ早期(遅くとも3年生の冬休み前まで)に、しっかりと自己分析・企 業研究を終え、かつ、適切な日本語での表現力を身につけておくことが肝要です。3年生の夏休みまでにインターンシップを経験しておくことも 必要です。この授業では、日本の就職活動やビジネス場面における社会人としての活動について、様々な知識とともに必要とされる上級の日本 語実践能力を育成します。一緒にがんばってみませんか。

キーワード /Keywords

高度なコミュニケーション能力, 就職活動, 敬語&マナー, 書類作成, エントリーシート作成、面接, ビジネス場面

補習数学

荒木 勝利.大貝 三郎.藤原 富美代 担当者名

/Instructor

履修年次 1年次 単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

2013 2014 2015 2016 対象入学年度 2008 2009 2010 2011 2012 2017

2018 2019 /Year of School Entrance 0 \circ \circ O 0 \circ 対象学科

【必修】 エネルギー循環化学科, 機械システム工学科, 情報メディア工学科, 建築デザイン学科, 環境生命工学科

/Department

※お知らせ/Notice 基礎学力確認テストの結果により、受講対象者であるかを通知します。受講対象者はこの補習科目の最終判定に合格しない 限り、「微分・積分(エネルギー循環化学科・建築デザイン学科・環境生命工学科)」、「微分積分I(機械システム工学科)」、及び「解析学 I(情報メディア工学科)」の単位を修得できません。

授業の概要 /Course Description

- 微分と積分の基本的な考え方について理解し、簡単な微積分の計算や応用問題に活用できるようにする。
- •数学に関する基礎的な問題について、自分で問題を理解し、解析し、思考発展させる能力を伸ばす。

教科書 /Textbooks

適宜プリントを配布する。

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

学研教育出版:よくわかる数学Ⅲ問題集

授業計画・内容 /Class schedules and Contents

- 1 数と式
- 2 方程式
- 3 いろいろな関数とグラフ (1)
- 4 いろいろな関数とグラフ (2)
- 5 いろいろな関数とグラフ (3)
- 6 微分(1)
- 7 微分(2)
- 8 微分(3)
- 9 指数関数と対数関数 (1)
- 10 指数関数と対数関数 (2)
- 11 指数関数と対数関数 (3)
- 12 三角関数 (1)
- 13 三角関数 (2)
- 14 微分(4)
- 15 微分(5)
- 16 微分(6)
- 17 微分(7)
- 18 微分(8)
- 19 微分(9)
- 20 積分(1)
- 21 積分(2)
- 22 積分(3)
- 23 積分(4) 24 積分(5)
- 25 積分(6)
- 26 積分(7)
- 27 積分(8)
- 28 積分 (9)・期末試験

成績評価の方法 /Assessment Method

演習 20%

中間・期末試験80% 中間試験は各分野の授業の終了後に実施する。

事前・事後学習の内容 /Preparation and Review

高等学校「数学Ⅰ」、「数学Ⅱ」、「数学Ⅲ」の教科書などを復習しておくこと。また、授業中や授業計画などで指定されている範囲の予習を行う こと。さらに授業内容の復習は必ず行うこと。

履修上の注意 /Remarks

クラス別により授業内容を変更する予定である。詳細については開講時に連絡する。

補習数学

担当者からのメッセージ /Message from the Instructor

数学の勉強では積み重ねが重要です。高校で学んだ数学についてよく復習して、大学の数学科目および専門科目での学修で必要となる数学的な 思考法と計算力を身につけてください。

補習物理

担当者名 平山 武彦,衛藤 陸雄,池山 繁成

/Instructor

履修年次 1年次 単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2013 2014 2018 2019 2008 2009 2010 2011 2012 2015 2016 2017 \circ \circ \circ Ο O O

対象学科 【必修】 エネルギー循環化学科, 機械システムエ学科, 情報メディアエ学科, 建築デザイン学科

/Department

※お知らせ/Notice 基礎学力確認テストの結果により、受講対象者であるかを通知します。受講対象者はこの補習科目の最終判定に合格しない限り、「物理実験基礎(エネルギー循環化学科、機械システム工学科、建築デザイン学科)」、「電気回路基礎・同演習 (情報メディア工学科)」の単位を修得できません。

授業の概要 /Course Description

多くの工学基礎科目および専門工学科目を受講する上で必要不可欠な「力学・熱・電気」について学習する.また,物理的思考力や応用力を養 うため,各回の講義の後に演習を行う.

教科書 /Textbooks

高校もしくは入学前学習にて使用した物理の教科書

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

なし

授業計画・内容 /Class schedules and Contents

- 1 導入,運動の表し方,速度と加速度
- 2 いろいろな力と運動の法則(1)
- 3 運動の法則(2)
- 4 運動の法則(3)
- 5 力のつりあいとモーメント
- 6 仕事
- 7 中間試験I,問題の解説
- 8 力学的エネルギー
- 9 運動量と衝突
- 10 等速円運動,慣性力と万有引力
- 11 単振動
- 12 熱(1)
- 13 熱(2)
- 14 熱(3)
- 15 中間試験II,問題の解説
- 16 電場とクーロンの法則
- 17 電位
- 18 コンデンサー
- 19 直流回路(オームの法則)
- 20 キルヒホッフの法則
- 21 期末試験

成績評価の方法 /Assessment Method

確認テスト 20%

中間試験I,II,期末試験 80%

事前・事後学習の内容 /Preparation and Review

指定された範囲の予習と、授業内容の復習を行うこと。

履修上の注意 /Remarks

毎回,講義内容に関する確認テストを実施するため,必ず予習と復習を行うこと.

授業には,必ず高校で使用した物理の教科書を持参すること.(教科書が無い場合は購入すること)

クラスにより授業計画の内容が前後します.(どのクラスも,最終的な学習内容は変わりません)

担当者からのメッセージ /Message from the Instructor

授業進度がとても速いので,緊張感を持って授業に臨んで下さい.また,物理を初めて習う人にはハンディがありますが,あなたのガンバリで 必ず克服できます.そして,この授業で習得した自然科学の法則を物作りの工学に生かして下さい.

補習化学

担当者名 溝部 秀樹

/Instructor

履修年次 1年次 単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class

対象入学年度 /Year of School Entrance

2014 2018 2008 2009 2010 2011 2012 2013 2015 2016 2017 2019 O O Ο O O Ο

対象学科 【必修】 エネルギー循環化学科, 環境生命工学科

/Department

※お知らせ/Notice 基礎学力確認テストの結果により、受講対象者であるかを通知します。受講対象者はこの補習科目の最終判定に合格しない限り、「化学実験基礎」の単位を修得できません。

授業の概要 /Course Description

- ・大学で化学を学ぶために必要な基礎学力を向上させる。
- ・高校「化学基礎」「化学」の理論化学分野の基礎の確認と学力の向上を行う。
- ・問題が与えられた際に「自分で参考資料を見つけ、それを参考にすれば問題を解くことができる」という基本的な学習の取り組み方を身につ ける。

教科書 /Textbooks

プリント配布、各自の高校「化学基礎」・「化学」の教科書及び問題集

参考書(図書館蔵書には 〇) /References (Available in the library: 〇)

適宜、指示

授業計画・内容 /Class schedules and Contents

- 1. 単位換算、物質の量・濃度
- 2. 化学結合、結晶
- 3. 化学反応と量的関係
- 4. 酸と塩基①
- 5. 酸と塩基②、電離平衡
- 6. 酸化と還元①
- 7. 酸化と還元②、中間試験
- 8. 電池・電気分解
- 9. 化学反応と熱
- 10. 気体の法則①
- 11. 気体の法則②、溶液の性質①
- 12. 溶液の性質②
- 13. 反応の速さと化学平衡
- 14. 溶液の性質③、期末試験

成績評価の方法 /Assessment Method

中間試験・期末試験 80%

演習 20%

事前・事後学習の内容 /Preparation and Review

苦手な領域は、十分に復習すること。

高校の教科書・問題集を用いて、毎時間の授業の予習と、演習をした内容の復習を行うこと。

履修上の注意 /Remarks

電卓と高校化学の教科書(「化学基礎」・「化学」)を持参のこと

担当者からのメッセージ /Message from the Instructor

「習ったのに忘れてしまった」「聞いたことはあるが、よくわかっていない」「そこはあまり習っていない」など、個人によって基礎の理解度が 違うと思います。高校で習う「化学」のポイントをもう一度復習し、基礎学力を向上させることによって、大学で習う「化学」の中身を深めて 下さい。