※網掛けの科目については、本年度開講しません | 和日辰八 | 科目名 | 学期 | 履修年次 単位 | 索克 | |-----------|--|-----|---------|----------| | 科目区分 | 担当者 備考 | クラ | ス | ※ | | | ○高分子材料化学特論 | | | | | ■環境システム専攻 | (読替科目:○高分子材料化学特論) | 2学期 | 2 | 5 | | | ○固体材料化学特論
(読替科目:○固体材料化学特論)
黎 | 2学期 | 2 | 6 | | | ○分離精製工学特論
(読替科目:○分離精製工学特論) | 2学期 | 2 | | | | 西浜
○分光分析特論 | 章平 | | 7 | | | (読替科目:○分光分析特論) | 2学期 | 2 | - 8 | | | ○エネルギー化学特論
(読替科目:○エネルギー化学特論) | 1学期 | 2 | | | | ○反応設計工学特論 | 1学期 | 2 | <u> </u> | | | (読替科目:○反応設計工学特論)
———————————————————————————————————— | 裕之 | | 1 | | | ○化学反応工学特論
(読替科目:○化学反応工学特論)
朝見 | 2学期 | 2 | , | | | ○プロセス設計学特論
(読替科目:○プロセス設計学特論) | 1学期 | 2 | 1 | | | 吉塚 | 和治 | | | | | ○応用触媒工学特論
(読替科目:○応用触媒工学特論)
山本 | 1学期 | 2 | | | | ○ナノ先端材料特論 | 1学期 | 2 | | | | 山本 | 勝俊 | | | | | ○先端材料システム特論
(読替科目:○先端材料システム特論)
李 | 2学期 | 2 | . | | | ○環境材料工学特論
(読替科目:○環境材料工学特論) | 2学期 | 2 | ļ. | | | 塩澤環境化学プロセス特別講義 | | | | | | (読替科目: 環境化学プロセス特別講義)
○コース長、松方正彦(朝見賢二)、山本勝宏(秋葉 | 1学期 | 2 | | | | ○環境応答生理学特論
(読替科目:○環境応答生理学特論)
河野 | 1学期 | 2 | , | | | ○微生物機能学特論
(読替科目:○微生物機能学特論)
森田 | 2学期 | 2 | | | | 科目名 | | 学期 | 履修年次 | 単位 | | |--------------------|---------------------------------------|---------------------------------------|---------------|-------|----|----------| | 科目区分 | | 担当者 | クラ |
ス | | 索引 | | - may a | 備考 | | | · · | | | | ■専門科目
■環境システム専攻 | ○生物物理特論
(読替科目:○生物物理特論) | | 2学期 | | 2 | | | = 塚先ノハナム寺以 | (DC = 1-1 H) | 櫻井 和朗 | | | | 19 | | | | | | | | | | | ○計算化学特論 | | 2学期 | | 2 | | | | (読替科目:○計算化学特論) | 上江洲 一也 | | | | 20 | | | | <u> </u> | | | | | | | ○生体材料特論 | | 1学期 | | 2 | | | | (読替科目:○生体材料特論) | | , , , | | | 21 | | | | 中澤浩二 | | | | | | |
○生物センサー工学特論 | | | | | | | | (読替科目:○生物センサー工学特論) | | 2学期 | | 2 | | | | , | 礒田 隆聡 | | | | 22 | | | | | | | | | | | ○生態系管理学特論 | | 1学期 | | 2 | | | | (読替科目:○生態系管理学特論) | 原口 昭 他 | | | | 23 | | | | , , , , , , , , , , , , , , , , , , , | | | | | | | ○環境生物学特論 | | 1学期 | | 2 | | | | (読替科目:○環境生物学特論) | | | | | 24 | | | | 上田 直子 | | | | | | |
○地球化学特論 | | | | | | | | (読替科目:○地球化学特論) | | 1学期 | | 2 | 25 | | | | 西尾 文彦 | | | | 25 | | | - +n + += + = - > * > + = \ | | | | | | | | ○都市環境マネジメント特論
(読替科目:○都市環境マネジメント特論) | | 1学期 | | 2 | | | | (252.1.2.1.2.2.3.2.1.2.2.1.2.2.) | 松本 亨 | | | | 26 | | | | | | | | | | | ○環境政策特論 | | 1学期 | | 2 | | | | (読替科目:○環境政策特論)
 |
乙間 末廣 | | | | 27 | | | | | | | | | | | ○環境経営戦略特論 | | 2学期 | | 2 | | | | (読替科目:○環境経営戦略特論) | | | | | 28 | | | | 二渡了 | | | | | | |
○環境情報システム特論 | | = W Min | | | | | | (読替科目:○環境情報システム特論) | | 2学期 | | 2 | 29 | | | | 野上 敦嗣 | | | | 23 | | |
○環境化学特論 | | | | | | | | ○環 児1ご子 行調
(読替科目:○環境化学特論) | | 1学期 | | 2 | | | | () | 門上希和夫 | | 1 | | 30 | | | | | | | | <u> </u> | | | ○環境保全工学特論 | | 2学期 | | 2 | | | | (読替科目:○環境保全工学特論)
 |
石川 精一 | | | | 31 | | | | E/:1 '18 | | | | | | | ○資源循環技術特論 | | 2学期 | | 2 | | | | (読替科目:○資源循環技術特論) | | <u>∠</u> ⊤79J | | | 32 | | | | 安井 英斉 | | | | | | |
○流域マネジメント特論 | | | | | | | | ○ 加-以 マイン | | 1学期 | | 2 | 200 | | | , , | 安井 英斉 | | , | | 33 | | | | | | | | | | NEED | 科目名 | | 学期 | 履修年次 | 単位 | 索引 | | |-----------|--|----------|---------|------|----|------|--| | 科目区分 | | 担当者 | クラス | | | | | | | ○地球環境戦略特論 | | a W Min | | | | | | ■環境システム専攻 | (読替科目:○地球環境戦略特論) | 加藤 尊秋 | 2学期
 | | 2 | 34 | | | | ○地圏環境修復特論
(読替科目:○地圏環境修復特論) | | 1学期 | | 2 | | | | | (DOE THE ADMINISTRAÇÃO DE TO MIS) | 伊藤 洋 | | | | 35 | | | | ○生産工程学特論
(読替科目:○生産工程学特論) | 水野 貞男 | 2学期 | | 2 | - 36 | | | | ○リサイクル工学特論 | | 0.24.4H | | 0 | | | | | (読替科目:○リサイクル工学特論) | 大矢 仁史 | 2学期 | | 2 | 37 | | | | 大気環境工学特論
(読替科目:○健康リスク学特論) | | 1学期 | | 2 | 38 | | | | | 馬昌珍 | | | | | | | | ○廃棄物工学特論

 | 島岡 隆行 | 1学期 | | 2 | 2 | | | ■環境工学専攻 | ○熱動力システム特別講義 | | 2学期 | | 2 | | | | | | 泉政明他 | | | | 3 | | | | ○流動制御システム特別講義
(読替科目:○流動制御システム特別講義) | 宮里 義昭 他 | 2学期 | | 2 | 39 | | | | -
-
-
○設計システム特別講義 | 白土 我们 吃 | | | | | | | | (読替科目:○設計システム特別講義) | 松永 良一 他 | 1学期 | | 2 | 40 | | | | ○エネルギーシステム特論 | | 1学期 | | 2 | 4 | | | | | 井上 浩一 | | | | , | | | | ○システム工学特論
(読替科目:○システム工学特別講義) | 清田 高徳 他 | 2学期 | | 2 | 41 | | | | ○ロボティクス特別講義(読替科目:○ロボティクス特別講義) | | 1学期 | | 2 | | | | | (| 清田高徳 | | | | 42 | | | | ○環境共生都市づくり講究
(読替科目:○環境共生都市づくり講究) | 福田 展淳 他 | 1学期 | | 2 | 43 | | | | 居住環境設計学講究 (読替科目: 居住環境設計学講究) | | 1学期 | | 2 | 44 | | | | ○福存部初刊十州十六等中 | 黒木 荘一郎 他 | | | | | | | | ○環境調和型材料工学講究
(読替科目:○環境調和型材料工学講究) | 小山田 英弘 | 1学期 | | 2 | 45 | | | AL = 1 | 科目名 | | 学期 | 履修年次 | 単位 | + 71 | |---------|-------------------------------------|-----------|----------|------|----|------| | 科目区分 | ## #Z | 担当者 | クラス | | | 索引 | | ■専門科目 | | | | | | | | ■環境工学専攻 | (読替科目: 世代間建築講究) | | 1学期 | | 2 | 46 | | | | 小山田 英弘 | | | | 46 | | |
○都市環境工学講究 | | | | | | | | ○10日 保免工 子 牌 九 (読替科目:○都市環境工学講究) | | 1学期 | | 2 | 47 | | | | 高 偉俊 他 | | | | 47 | | | 34 W 7 11 4 - W 5 4 - | | | | | | | | 建築環境工学講究
(読替科目: 建築環境工学講究) | | 1学期 | | 2 | | | | (302.112.1.22.113.20) | 龍有二他 | | | | 48 | | | | | | | | | | | 建築構造学講究 | | 2学期 | | 2 | | | | (読替科目: 建築構造学講究) | 津田 惠吾 他 | | | | 49 | | | | .,,, | | | | | | | 建築構工法講究 | | 1学期 | | 2 | | | | (読替科目: 建築構工法講究) | 保木 和明 | | | | 50 | | | | | | | | | | | 環境設備システム講究 | | 2学期 | | 2 | | | | (読替科目: 環境設備システム講究) | * + - 4 | 2170 | | | 51 | | | | 龍有二他 | | | | | | | | | 0.24.440 | | | | | | (読替科目: 建築材料講究) | | 2学期 | | 2 | 52 | | | | 高巣 幸二 | | | | 02 | | ■情報工学専攻 |
○音声ディジタル信号処理特論 | | | | | | | | (読替科目:○音声ディジタル信号処理特論) | | 2学期 | | 2 | 53 | | | | 西 隆司 | | | | 33 | | |
○適応信号処理特論 | | | | | | | | (読替科目:○適応信号処理特論) | | 1学期 | | 2 | | | | | 孫 連明 | | | | 54 | | | - HD W. Art TD be TD Art = A | | | | | | | | ○視覚情報処理特論
(読替科目:○視覚情報処理特論) | | 1学期 | | 2 | | | | (MULEI FIEL : PUSSIBITACE TO MRD) | 佐藤 雅之 | | | | 55 | | | | | | | | | | | ○パターン認識応用特論 | | 2学期 | | 2 | | | | (読替科目:○パターン認識応用特論) |
山崎 恭 | | | | 56 | | | | | | | | | | | ○情報セキュリティ特論 | | 1学期 | | 2 | | | | (読替科目:○情報セキュリティ特論) | | | | | 57 | | | | 江 | | | | | | | メディアセキュリティ工学特論 | | 1学期 | | 2 | | | | | + + | | | | _ | | | | <u>未定</u> | | | | | | |
○画像処理特論 | | 1 学 即 | | 2 | | | | (読替科目:○画像処理特論) | | 1学期 | | 2 | 58 | | | | 奥田 正浩 | | | | | | |
○移動通信特論 | | | | | | | | ○19到10日付冊 (読替科目:○移動通信特論) | | 1学期 | | 2 | E0 | | | , , | 梶原 昭博 | | | | 59 | | | | | | | | | | 원모 (7.1 | 科目名 | 学期 | 覆修年次 | 単位 | * 31 | |----------------------|---|-----|------|----|-------------| | 科目区分 | 担当者 備考 | クラス | | | 索引 | | ■専門科目
■情報工学専攻 | ○情報通信特論
(読替科目:○情報通信特論)
上原 聡 | 1学期 | | 2 | 60 | | | ○ V L S I 信号解析特論
(読替科目: ○VLSI信号解析特論)
鈴木 五郎 | 2学期 | | 2 | 61 | | | ○組み合わせ最適化特論
(読替科目:○組み合わせ最適化特論) | 1学期 | | 2 | 62 | | | 高島 康裕 ○VLSI物理設計特論 (読替科目: ○VLSI物理設計特論) | 2学期 | | 2 | 63 | | | 中武 繁寿 ○非線形最適化特論 (読替科目:○非線形最適化特論) | 1学期 | | 2 | 64 | | | 宮下 弘 ○ビークル制御特論 (読替科目: 制御応用工学特論) | 2学期 | | 2 | 65 | | | 高橋 徹 ○知能メカトロニクス特論 (読替科目:○計測応用工学特論) | 2学期 | | 2 | | | | 松波 勲○システム制御理論特論 | 1学期 | | 2 | 66 | | | (読替科目:○システム制御理論特論) 堀口 和己 | | | _ | 67 | | | ○ネットワークアーキテクチャ特論
(読替科目:○ネットワークアーキテクチャ特論)
古閑 宏幸 | 1学期 | | 2 | 68 | | ■特別研究科目
■環境システム専攻 | ○特別研究(環境システム)
(読替科目:○特別研究)
各研究指導教員/Research Advisor | 通年 | | 6 | 69 | ## ○ナノ先端材料特論 (Nanotechnology) 担当者名 山本 勝俊 / Katsutoshi YAMAMOTO / エネルギー循環化学科 (19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 2004 2008 2012 2002 2003 2005 2006 2007 2009 2010 2011 2013 O 0 O O Ο 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ## 授業の概要 /Course Description ナノテクノロジーは、我々の生活のなかで様々な用途で使われつつある。本授業では、ナノテクノロジーの応用面からのアプローチを図る。トピックス的な事を中心に授業を進めるが、その応用を行うための基礎的な科学に関して説明を行う。 特に、微細加工の代表的応用例としての半導体デバイスや自動車や環境分野への応用、さらに、新たな化学反応装置・分析装置であるマイクロ空間化学に関しての解説をおこない、科学技術と社会、異分野融合などについても議論する。 Nanotechnology is rather new term, but it has rapidly spread into the world and gradually come into our daily life. In this class, we will approach nanotechnology from their application side. We will pickup various applications, as well as scientific back ground of those applications. Especially, we will introduce and discuss about application of nanotechnologies on the semiconductor devices, car industry, environments, and micro-space chemistry. #### 教科書 /Textbooks 資料を配布する Will be distributed at the class. ## 参考書(図書館蔵書には 〇) /References(Available in the library: 〇) 無し N/A #### 授業計画・内容 /Class schedules and Contents - 1 身近なナノテクノロジー - 2 世界の動き:ナノテクイニシアティブ - 3 半導体を支えたナノテクノロジー - 4 半導体微細化の限界とナノエレクトロニクス - 5 ナノ構造の観察:プローブ顕微鏡 - 6 ナノ状態分析 - 7 情報・通信とナノテクノロジー(電子、光デバイス) - 8 健康・医療とナノテクノロジー - 9 環境・エネルギーとナノテクノロジー - 10 マイクロ・ナノ化学とは - 11 マイクロリアクターの設計と作製 - 12 化学への応用:分析への応用 - 13 化学への応用:合成・反応装置 - 14 バイオへの応用 - 15 まとめ - 1. Nanotechnology in daily life - 2. Nanotechnology and world: Nanotechnology Initiative - 3. Nanotechnology and semiconductors - 4. Miniaturelization of semiconductors and nanoelectronics - 5. Observation of nanostructures: Prove microscopes - 6. Nanostate analysis - 7. Information technology and nanotechnology(electronical and optical devices) - 8. Nanotechnology and health and medicals - 9. Nanotechnology and enviroments - 10. Introduction to micro-space chemistry - 11. Designing and fabrication of microreactors - 12. Chemical application of microreactors: sencing - 13. Chemical application of microreactors: production - 14. Biological application of microreactors - 15. Summary ## ○ナノ先端材料特論 (Nanotechnology) #### 成績評価の方法 /Assessment Method レポート 70% 発表 30% Report 70% Presentation 30% ### 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class 授業では、講師が各トピックスについての概略を説明するが、各トピックスやそれに関連した科学・技術などについて学生諸君が各自で調べ、 発表・ディスカッションする形式を併用する。 Class time will be used for (1)introduction of each topic by the lecturers, and (2) presentation and discussion based on the investigation made by student(s). Student(s) will be assigned to investigate the topics related in the lectures for next class time. #### 履修上の注意 /Remarks
履修登録前に必ず講義担当者に講義に関して問い合わせること。 Inquire directly of the instructor about the class before registration. ### 担当者からのメッセージ /Message from the Instructor 授業では様々なテーマについて、学生からの積極的な参加・発言を求める。 In the class time, we expect student active discussions. ## ○廃棄物工学特論 (Advanced Solid Waste Management Engineering) 担当者名 島岡 隆行 / Takayuki SHIMAOKA / 非常勤講師 /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建/Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 固体廃棄物を中心とする廃棄物処理に関し、第一に、最新の理学・工学理論を紹介する。第二に、理論の現実への応用に際して生じる諸問題を 論じる。この中には、制度的な検討事項も含まれる。到達目標は、工学的実務家、政策学的実務家、また、研究者として国内外の環境問題に取 り組む際に必要な廃棄物工学の知識の一端を身につけることである。 In this course, firstly, state of the art scientific and engineering theories for waste disposal mainly dealing with solid waste are introduced. Secondly, various problems occuring while applying these theories to real cases are discussed. This discussion includes institutional considerations. Through this course, students will master essential knowledge for tackling environmental problems in the world as engineering practicians, political practicians or researchers. #### 教科書 /Textbooks 特に指定しない。 There is no specification. ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 特に指定しない。 There is no specification. #### 授業計画・内容 /Class schedules and Contents - 1. 廃棄物処理・循環計画の理論と課題 1 - 2. 廃棄物処理・循環計画の理論と課題 2 - 3. 廃棄物収集計画の理論と課題 1 - 4. 廃棄物収集計画の理論と課題 2 - 5. 廃棄物中間処理の理論と課題 1 - 6. 廃棄物中間処理の理論と課題 2 - 7. 廃棄物のリサイクルと課題 1 - 8. 廃棄物のリサイクルと課題 2 - 9. 廃棄物最終処分の理論 1 - 10.廃棄物最終処分の理論 2 - 11 廃棄物最終処分の理論 3 - 12.廃棄物最終処分の地域特性 - 13.廃棄物最終処分の課題(技術面) - 14.廃棄物最終処分の課題(制度面) - 15.まとめ - 1. Theory and task of solid waste management and material recycle 1 - 2. Theory and task of solid waste management and material recycle 2 - 3. Theory and task of collection planning of solid waste 1 - 4. Theory and task of collection planning of solid waste 2 - 5. Theory and task of intermediate treatment of solid waste 1 - 6. Theory and task of intermediate treatment of solid waste 2 - 7. Recycling of solid waste and the matter of policy 1 - 8. Recycling of solid waste and the matter of policy 2 - 9. Theory of solid waste disposal 1 - 10. Theory of solid waste disposal 2 - 11. Theory of solid waste disposal 3 - 12. Regional characteristics of solid waste disposal - 13. Task of solid waste disposal: technical side - 14. Task of solid waste disposal: system side - 15.Review and summary ## 成績評価の方法 /Assessment Method レポート 40% テスト 60% Report 40% Exam 60% ## ○廃棄物工学特論 (Advanced Solid Waste Management Engineering) ## 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 特に指定しない。 There is no specification. ### 履修上の注意 /Remarks 本講義は、隔年開講である。原則、英語講義である。 This course opens every other year and is taught in English. ## 担当者からのメッセージ /Message from the Instructor ## ○熱動力システム特別講義 (Special Lecture on Heat Power Systems) 担当者名 泉 政明 / Masaaki IZUMI / 機械システム工学科(19~), 吉山 定見 / Sadami YOSHIYAMA / 機械システム /Instructor 工学科 (19~) 井上 浩一 / Koichi INOUE / 機械システム工学科 (19~) 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description ガス動力システム及び蒸気動力システムについての熱力学的観点からの性能解析法を解説する。 ガス動力システムでは,オットーサイクルやディーゼルサイクルを基本とした内燃機関の燃焼現象について解説する.熱効率向上と有害排出物 の低減技術として,現在注目されるHCCI燃焼やPCCI燃焼についても言及する. 蒸気動力システムでは,ランキンサイクルを基本サイクルとして,実際のサイクルとの違いを理解し,熱効率を引き下げている原因を第2法則解析を用いて明らかにする。更に,コージェネレーションや複合動力サイクルなどの応用についても考察する。 本授業ではガス動力システム及び蒸気動力システムの性能を熱力学的に解析する力を身につけることを目標とする。 Analyzing techniques of thermal performance on systems of gas and steam power are lectured. In gas power system the combustion phenomena in internal combustion engines based on Otto cycle or Diesel cycle is introduced.HCCI combustion and PCCI combustion which are key technologies for improvement of thermal efficiency and reduction of exhaust emissions are focused. In steam power system, differences between Rankin cycle and real cycle are lectured and methods for reduction of the thermal efficiency are discussed with the second law of thermodynamics. Moreover application of co-generation system and combined power cycle is discussed. The aim of this cource is to obtain the ability to thermodinamically analyze the performance on the systems of gas and steam power. #### 教科書 /Textbooks 資料配布 Handout ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に適宜紹介する。 To be announced in class ## ○熱動力システム特別講義 (Special Lecture on Heat Power Systems) #### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス - 2 ガス動力システム(オットーサイクル) - 3 ガス動力システム(火花点火機関,直噴ガソリン機関) - 4 ガス動力システム(燃料噴霧,混合気形成,流れ) - 5 ガス動力システム (ディーゼルサイクル) - 6 ガス動力システム(噴霧燃焼) - 7 ガス動力システム(HCCI, PCCI燃焼) - 8 蒸気動力システム(ランキンサイクル) - 9 蒸気動力システム(理想的サイクルと実際のサイクルとの違い) - 10 蒸気動力システム(熱効率向上 - 11 蒸気動力システム(再熱・再生サイクル) - 12 蒸気動力システム(第2法則解析) - 13 蒸気動力システム(コージェネレーション) - 14 蒸気動力システム(ガス-蒸気複合動力サイクル) - 15 まとめ - 1 Guidance - 2 Gas Cycle and Heat Engine (Otto Cycle) - 3 Gas Cycle and Heat Engine (SI Engine and DISI Engine) - 4 Gas Cycle and Heat Engine (Fuel Spray, Mixture Formationand Gas Flow) - 5 Gas Cycle and Heat Engine (Diesel Cycle) - 6 Gas Cycle and Heat Engine (Spray Combustion) - 7 Gas Cycle and Heat Engine (HCCI and PCCI Combustion) - 8 Vapor Power Cycles (Rankine Cycle) - 9 Vapor Power Cycles (Deviation of Actual Vapor Power Cycles from Idealized Ones) - 10 Vapor Power Cycles (Efficiency Improvement) - 11 Vapor Power Cycles(Reheat and Regenerative Cycles) - 12 Vapor Power Cycles (Second-Law Analysis) - 13 Vapor Power Cycles (Cogeneration) - 14 Vapor Power Cycles (Combined Gas-Vapor Power Cycles) - 15 Conclusions ## 成績評価の方法 /Assessment Method レポート 100% Reports 100% ### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class なし None #### 履修上の注意 /Remarks 熱力学と燃焼工学に関する知識を要する。 Knowledge of thermodynamics and combustion engineering is required. ## 担当者からのメッセージ /Message from the Instructor ## ○エネルギーシステム特論 (Advanced Energy Systems) 担当者名 井上 浩一 / Koichi INOUE / 機械システム工学科 (19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | |------|------|------|------|------|------|------|------|------|------|------|------| | | | | | | | 0 | 0 | 0 | 0 | 0 | | 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description The latest technical developments in electric power generation systems are studied through the paper investigation. #### 教科書 /Textbooks None ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) The Thermal and Nuclear Power (Karyoku Genshiryoku Hatsuden), Thermal and Nuclear Power Engineering Society #### 授業計画・内容 /Class schedules and Contents - 1 Classification of energy - 2 Energy conversion matrix - 3 Mechanical energy - 4 Hydraulic power generation - 5 Wind power generation - 6 Thermal power generation 1 [heat rate] - 7 Thermal power generation 2 [fossil fuel] - 8 Thermal power generation 3 [gas turbine combined cycle] - 9 Nuclear power generation 1 [PWR] - 10 Nuclear power generation 2 [BWR] - 11 New power generation systems 1 [coal gasification] - 12 New power generation systems 2 [CO2 recovery] - 13 New power generation systems 3 [solar power] - 14 Presentation - 15 Review #### 成績評価の方法 /Assessment Method Comprehensive evaluation by reports and presentation 100% #### 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class None ## 履修上の注意 /Remarks ## 担当者からのメッセージ /Message from the Instructor ## ○高分子材料化学特論 (Advanced Polymer Chemistry) 秋葉 勇 / Isamu AKIBA / エネルギー循環化学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2002 2003 2004 2012 2008 2013 2005 2006 2007 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 本講義では、基礎および最先端の高分子の合成および物性について解説する。 本講義の到達目標は、(1)高分子精密合成機構を理解する、(2)高分子溶液の統計熱力学を理解する、(3)高分子特性解析法の原理を理 解することである。 This lecture explains an fundamental and advanced polymer syntheses, reactions and properties. The target of this lecture is as follows. - (1) Understanding about mechanisms of precise syntheses of polymers - (2) Understanding about statistical thermodynamics of polymer solution - (3) Understanding about principles of characterizations of single chain molecule. #### 教科書 /Textbooks 指定しない Nothing in particular ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 指定しない Nothing in particular #### 授業計画・内容 /Class schedules and Contents - 1 ニトロキサイドを用いた制御ラジカル重合法 - 2 RAFT重合法 - 3 ATRP法 - 4. リビングアニオン重合 - 5. 配位重合 - 6. リビングカチオン重合 - 7. 官能基変換 - 8. ゲル化 - 9. Flory-Huggins理論 - 10. 化学ポテンシャル - 11. 相平衡 - 12. 浸透圧、蒸気圧 - 13. 光散乱 - 14. 小角X線散乱 - 15. 溶液粘度. - 1 Nitroxide-mediated Polymerization - 2 RAFT Polymerization - 3 ATRP Polymerization - 4 Living Anionic Polymerization - 5 Coordination Polymerization - 6 Living Cationic Polymerization - 7 Conversion of Fuctional Groups - 8 Gelation - 9 Flory-Huggins Theory - 10 Chemical Potential - 11 Phase Equilibrium - 12 Osmotic Pressure, Vapor Pressure - 13 Light Scattering - 14 Small-angle X-ray Scattering - 15 Viscosity of Solution ## ○高分子材料化学特論 (Advanced Polymer Chemistry) 成績評価の方法 /Assessment Method レポートのみで評価 100% Report 100% 事前・事後学習の内容 /Preparation and Review 授業に対する準備事項 /Preparation for the Class 特になし Nothing in particular 履修上の注意 /Remarks 担当者からのメッセージ /Message from the Instructor ## ○固体材料化学特論 (Advanced Solid State Materials Chemistry) 担当者名 黎 暁紅 / Xiaohong LI / エネルギー循環化学科(19~) /Instructor 履修年次単位2単位学期2学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description /Year
of School Entrance 固体の構造と結合の関係、そして物性を左右する結晶と電子構造との相互作用を中心として講述する。結晶構造を紹介するとともに、数多くの 固体の性質と構造の関係について解明する。X線回折法をはじめ、顕微鏡法、熱分析、磁気測定など固体の構造や物性をキャラクタライズ(特徴 づけ)するための手法を学ぶ。結晶構造中の不純物原子により各種の欠陥が生じ、固体の化学的・物理的な性質に重大な影響を及ぼすことを理 解することを到達目標とする。最後に、有用な特性を示すいくつかの固体の合成法について紹介する。 This course provides mainly the relationship between solid structure and chemical bonding, and interaction between crystals that determines the physicality and electronic structure. Students can learn crystal structure, concepts of ion radius and lattice energy and therefore understand the relationship between solid characteristics and their structures. Students also learn various methods that characterize the structure and physicality of solids including X-ray diffraction, microscopy, thermal analysis, and magnetic measurement. Students will be able to understand that impurity atoms in crystal structure cause defects that significantly change the physical and chemical properties of solids. This course also covers some synthetic methods of solids that show interesting and useful characteristics. #### 教科書 /Textbooks reading materials ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) reading materials #### 授業計画・内容 /Class schedules and Contents - 1 固体材料化学について/ An Introduction to Solid State Materials Chemistry - 2 固体のミクロ構造とマクロ構造/ Micro and Macro structure in Solids - 3 材料の結晶構造と対称性/Crystal Structure and Symmetry in Materials - 4 結晶構造と空間群/Crystal Structure and Space Group - 5 固体のエネルギー化学/ Energy Chemistry of Solids - 6 X線回折の実例/ Actual examples of X-ray Diffraction - 7 複合材料技術/Composite Material Technologies - 8 固体の有機合成法/Organic Synthesis Method for Solids Preparation - 9 メンブレンの製法/ Preparative Methods of Membrane - 10 固体の力学的性質/ Mechanical Properties of Solids - 11 格子欠陥の役割/ Role of Lattice Defects - 12 低次元固体の応用/Application of low dimension solids - 13 セラミックスの応用/Application of Ceramics - 14 超伝導体の応用/Application of Superconductors - 15 演習/exercise ## 成績評価の方法 /Assessment Method レポート/report 100% ## 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 電卓 calculator #### 履修上の注意 /Remarks ## 担当者からのメッセージ /Message from the Instructor 関連する文献を調査して欲しい。 Investigate the related articles. ## ○分離精製工学特論 (Advanced Separation and Purification Engineering) 担当者名 西浜 章平 / Syouhei NISHIHAMA / エネルギー循環化学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象 1 学年度 2002 2004 200 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Year of School Entrance Contract C 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ## 授業の概要 /Course Description 物質の分離精製は、高度な化学産業を支えるための重要な技術の一つである。本講義では分離操作の中でも、湿式精錬に関する技術について、 特にイオン交換法と溶媒抽出法を取り上げ、基礎から実プロセスまでを講義する。また、湿式精錬に関する最新の文献を調査・考察し、プレゼ ンテーションを行う。 湿式精錬技術の基本原理を習得するとともに、既存の技術の高機能化に関する最新の技術に関する学術的理解を深めることを到達目標とする。 Separation and purification of materials are one of the important technologies in the chemical industries. In this lecture, hydrometallurgical technology and process, especially ion exchange and solvent extraction, are introduced. The review of the latest literature related to the hydrometallurgy is also given. Goal of this lecture is to learn principles of hydrometallurgical technologies and to understand latest technologies for advanced hydrometallurgical processes. #### 教科書 /Textbooks 講義中に指示する。 Textbooks are shown in the class. ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に指示する。 References are shown in the class. ### 授業計画・内容 /Class schedules and Contents - 1. 湿式精錬プロセスの概要 - 2. イオン交換法の概略 - 3. イオン交換樹脂 - 4.抽出剤含浸樹脂 - 5. クロマト分離 - 6. イオン交換法の水処理への適用 - 7. イオン交換法の湿式精錬への適用 - 8.イオン交換法に関する文献レビュー - 9.溶媒抽出法の概略 - 10. 湿式精錬に用いられる抽出剤 - 11.スロープアナリシス法 - 12 . ミキサーセトラー - 13. 化学反応を組み込んだ溶媒抽出法 - 14. 溶媒抽出法の湿式精錬への適用 - 15. 溶媒抽出法に関する文献レビュー - 1. Outline of hydrometallurgical process - 2. Outline of ion exchange - 3. Ion exchangers - 4. Solvent impregnated resins - 5. Chromatographic separation - 6. Application of ion exchange to water treatment - 7. Application of ion exchange to hydrometallurgy - 8. Literature review related to ion exchange - 9. Outline of solvent extraction - 10. Extractants for hydrometallurgy - 11. Slope analysis method - 12. Mixer-settler cascade - 13. Solvent extraction combined with chemical reaction - 14. Application of solvent extraction to hydrometallurgy - 15. Literature review related to solvent extraction ## ○分離精製工学特論 (Advanced Separation and Purification Engineering) ### 成績評価の方法 /Assessment Method 課題 60% 文献レビュー 40% Excersize 60% Literature review 40% ### 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 化学工学の基礎知識を有していることが望ましい。 Knowledge of chemical engineering is required. ## 履修上の注意 /Remarks ## 担当者からのメッセージ /Message from the Instructor ## ○分光分析特論 (Spectroscopic Analysis) 鈴木 拓 / Takuya SUZUKI / エネルギー循環化学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2012 2004 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description X線回折による構造解析を行う場合、空間群の把握が最初の関門となる。本講義では空間群分類の基本となるInternational tablesの読み方を最初 に学ぶ。回折の理論に触れた後、後半は実際に粉末X線データを用いたリートベルト法によるフィッティングを各自で行い、粉末X線構造最適化 についての演習も行う。 #### 授業の到達目標 International tablesの各項目の意味を理解し、必要なデータを利用可能となること。 粉末X線回折法の測定原理について理解すること。 When beginner analyst start to the structure analysis by X-ray diffraction, select of a space group is the first gateway. At this class, the reading of International tables used as the foundations of a space group classification is studied first. After touching the theory of diffraction, fitting by the Rietveld method for actual powder X-rays data will be performed by themselves. Study of how to read international tables Study of how to measure the X-ray powder diffraction #### 教科書 /Textbooks 物質の対称性と群論 今野豊彦著 共立出版 ### 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) ○粉末X線解析の実際-リートベルト法入門 中井 泉 (著), 泉 富士夫 (著), 日本分析化学会X線分析研究懇談会 (編集) ## ○分光分析特論 (Spectroscopic Analysis) ## 授業計画・内容 /Class schedules and Contents - 1.イントロダクション - 2.対称性と結晶学I(対称操作とは?) - 3.対称性と結晶学II(格子の分類) - 4.International tablesの情報を読む - 5.量子力学の復習 - 6.X線回折強度 - 7.物質の対称性と結晶ひずみ - 8.物質の対称性とその応用 - 9.構造変化と回折パターン変化 - 10.構造精密化のための粉末X線設定 - 11.リートベルト法と、フィッティングプログラムRIETAN - 12.プログラムのインストールと初期設定 - 13.パターンフィッティング - 14.パラメータ - 15.解析方法のまとめ - 1 . Introdaction - 2 . Symmetry and crystallography (what is symmetry operation?) - 3 . Symmetry and crystallography (space group) - 4 . How to read the information of International tables - 5 . Review of quantum dynamics - 6 . X-ray diffraction intensity - 7 . Symmetry and a crystal stracture - 8 . Symmetry and a crystal stracture II - 9 . A structural change and diffraction pattern change - 10 . A powder X-rays setup for structure elaboration - 11 . The Rietveld method and fitting program RIETAN - 12 . Installation and initialization of a program - 13 . Pattern fitting - 14. Parameter setting - 15 . Analysis procedure ## 成績評価の方法 /Assessment Method レポートにより成績評価を行う。 11回以降に行うデータ処理結果についてのレポートとする。 #### Report theme: the result of analize for XPD data by Rietveld method in this class beterrn 11st to 15th. ## 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 教科書をベースとして授業は進むため、教科書・参考書を用意すること。 This class base on to the textbook., so each students must get the textbook and references. #### 履修上の注意 /Remarks ### 担当者からのメッセージ /Message from the Instructor ## ○エネルギー化学特論 (Advanced Energetic Chemistry) 担当者名 天野 史章 / Fumiaki AMANO / エネルギー循環化学科(19~) /Instructor 履修年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class / Control Cont 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 新しいエネルギー変換システムを設計・開発するためには、電子移動反応を適切に制御する必要があります。本授業では、電気化学を「平衡論」と「速度論」にわけて学習します。到達目標は以下のとおりです。 - ・標準電極電位の意味を理解し、電子の移動する向きを判断できる。 - ・電子移動速度とエネルギーギャップの関係を理解し、電流密度と電位の関係を説明できる。 Control of electron transfer reactions is required for developing novel energy conversion systems. Students learn electron transfer chemistry in the viewpoints of chemical equilibrium and kinetics. This class aims at understanding the following topics in electrochemistry: (1) electrode potential; (2) kinetics of electron transfers; and (3) relationship between current density and overpotential. #### 教科書 /Textbooks 電子移動の化学 ―電気化学入門(渡辺正・中林誠一郎 著)朝倉書店 ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) - 〇 ベーシック電気化学(大堺利行・加納健司・桑畑進 著)化学同人 - O Electrochemical Methods: Fundamentals and Applications, 2nd Edition (Allen J. Bard, Larry R. Faulkner) Wiley #### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス guidance - 2 エネルギーと化学平衡 energy and chemical equilibrium - 3 電位(電子エネルギー)の制御 control of electrode potential - 4 ネルンストの式 Nernst equation - 5 標準電極電位 standard electrode potential - 6 光励起と電子移動 photoexcitation and electron transfer - 7 光合成—天然の光電気化学プロセス photosynthesis—natural photoelectrochemical system - 8 エネルギーギャップと反応速度 reaction driving force and kinetics - 9 界面電子移動反応 kinetics of interfacial electron transfer - 10 分子のエネルギー準位、再配向エネルギー energy levels of molecules, reorganization energy - 11 活性化エネルギー、マーカス理論 activation-free energy, Marcus theory - 12 物質輸送、サイクリックボルタンメトリー mass transport, cyclic voltammetry - 13 表面反応の世界 surface science of electrode - 14 光エネルギー変換 photoenergy conversion - 15 まとめ summary #### 成績評価の方法 /Assessment Method 日常の授業への取り組み(演習問題)・・・10%、定期試験・・・90% Grading will be based on active class participation (10%) and the regular examination (90%). #### 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 予習・復習に力を注いでください。 The students are required to prepare and review the class. #### 履修上の注意 /Remarks 大学院入試レベルの物理化学を理解していること。 The students needs knowledge of basic physical chemistry. ### 担当者からのメッセージ /Message from the Instructor 資源・エネルギー・環境問題に関心をもち、化学技術者の立場から問題の本質を明らかにしてほしい。 Be interested in the issues of resources, energy, and
environment and clarify the essence of the issues from the viewpoint of chemical engineer. ## ○エネルギー化学特論 (Advanced Energetic Chemistry) ## キーワード /Keywords 化学平衡、電極電位、電子移動、活性化エネルギー、光エネルギー変換 chemical equilibrium, electrode potential, electron transfer, activation energy, photoenergy conversion ## ○反応設計工学特論 (Advanced Reaction Design and Engineering) 担当者名 今井 裕之 / Hiroyuki IMAI / エネルギー循環化学科(19~) /Instructor 履修年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象入学年度 2002 2003 2004 2005 2006 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description /Year of School Entrance 環境問題を解決するために資源・エネルギー・石油化学・化学の分野における技術開発に化学の原理と方法論を駆使して取り組み、物質をつくる段階、すなわちプロセスの反応設計に注力して、汚染防止と産業の環境に調和した発展に寄与するのに有効な方法と原理を習得させることを到達目標とし、将来型の環境工学の実践的専門研究者ないし学識リーダーを育成する。 Eco-friendly engineering for resources, energy, petrochemicals and chemicals to design reaction and process for environmental protection substantially. ### 教科書 /Textbooks 特になし Not designated. ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 特になし Not designated. #### 授業計画・内容 /Class schedules and Contents 課題に対して取り組み、社会に対して具体的な提案ないし技術開発課題設定ができるようにする。また、発明を成すための創造的思考方法についても指導する。 - 1 ガイダンス guidance - 2 地球環境工学 global enviromental engineering - 3 排煙脱硫・脱硝の化学反応・触媒技術 flue gas DeSOx DeNOx - 4 高度水処理/接触処理 catalytic treating for waste water - 5 難分解物の化学・化学工学 VOC chemistry - 6 石油化学技術 petrochemicals - 7 石油精製技術 petroleum refinning - 8 クリーンエネルギー clean energy - 9 天然ガス利用技術 natural gas utilization - 10 環境調和型ナノポアー素材/ゼオライト(1) zeolite - 11 環境調和型ナノポアー素材/ゼオライト(2)zeolite - 12 環境調和型ナノポアー素材/イオン交換樹脂(1)IE resin - 13 環境調和型ナノポアー素材/イオン交換樹脂(2)IE resin - 14 総括演習 (1) exercise - 15 総括演習(2) exercise #### 成績評価の方法 /Assessment Method 演習/ exercise 45% 発表/ presentation 55% 口答試問を含む/ including Q&A #### 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 課題に関してキーとなる見識を準備のこと。 Prepare to knowledge for lecture item. ### 履修上の注意 /Remarks # ○反応設計工学特論 (Advanced Reaction Design and Engineering) ## 担当者からのメッセージ /Message from the Instructor 対話型授業に積極的に参加すること。 Try to discuss. ## ○化学反応工学特論 (Advanced Kinetics and Reaction Engineering) 担当者名 朝見 賢二 / Kenji ASAMI / エネルギー循環化学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class /Teal /Cleuits /Semester /Class Format 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ## 授業の概要 /Course Description この授業の到達目標は以下のとおりとする。 1.化学反応速度と反応機構の理論について深く学び、自己の研究で自在に駆使できるようにする。 2.反応速度、反応機構の面からみた自己の研究を発表し合い互いにディスカッションする。 The objectives of this class is: - 1. Thorough study on the theory of chemical reaction kinetics and reaction mechanism for the students to apply it to their own research work. - 2. Presentation by every student about his/her own research from the view point of reactin kinetics and mechanism and discussion with other students. #### 教科書 /Textbooks - 1.ボール 物理化学(下) - 2.新しい触媒化学 ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 特に指定しない Nothing specified ### 授業計画・内容 /Class schedules and Contents 1 ガイダンス・導入 Guidance & Introduction 2 反応速度理論 (1)【速度式】Theory of reaction kinetics (1)【Rate equation】3 反応速度理論 (2)【1 次反応速度式】Theory of reaction kinetics (2)【First order kinetics】 4 反応速度理論 (3) 【 2 次反応速度式】 Theory of reaction kinetics (3) 【 Second order kinetics】 5 反応速度理論 (4) 【アレニウス式】 Theory of reaction kinetics (4) 【 Arrhenius equation 】 6 反応機構理論 (1) 【素反応】 Theory of reaction mechanism (1) 【 Elementary reaction】 7 反応機構理論 (2) 【定常状態近似】 Theory of reaction mechanism (2) 【Steady state approximation】 8 反応機構理論 (3) 【連鎖反応】 Theory of reaction mechanism (3) 【Chain reaction】 9 反応機構理論 (4) 【遷移状態理論】 Theory of reaction mechanism (3) 【Chain reaction】 10 吸着理論(1) 【吸着現象】 Theory of adsorptiom (1) 【Adsorption phanomenon】 11 吸着理論(2) 【吸着機構】 Theory of adsorption (2) 【Adsorption mechanism】 12 吸着理論(3) 【L-H機構の速度式】 Theory of adsorptiom (3) 【Langmuir-Hinshelwood rate equation】 13 発表会(1) Presentation (1) Presentation (2) Presentation (2) Discussion #### 成績評価の方法 /Assessment Method 発表内容(40%)、質疑応答(40%)、レポート(20%) Presentation(40%), Contents(20%), Communication(40%) #### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 自己の研究テーマについて反応速度、反応機構の関わり合いについて考察しておくこと。 It is important to consider the relation between your own work and reaction kinetics and mechanism. ## 履修上の注意 /Remarks ## 担当者からのメッセージ /Message from the Instructor ## ○プロセス設計学特論 (Advanced Process Design) /Year of School Entrance 担当者名 吉塚 和治 / Kazuharu YOSHIZUKA / エネルギー循環化学科(19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ## 授業の概要 /Course Description 化学反応や生物反応を用いた物質生産プロセスは、反応プロセスと分離精製プロセスに大別され、各プロセスの高効率化と並んで各プロセスの適切な組み合わせが重要である。特に、生産物の反応媒体中や副生成物からの分離精製プロセスは、プロセス全体のコストの2/3以上を占め、分離要素技術の適切な選択と最適化が生産プロセスの実用化を導くカギとなる。本講義では、化学反応と生物反応プロセスならびに分離精製プロセスの種類と操作方法および応用分野について、その実例を交えて解説する。 到達目標は以下のとおりです。 - ・反応器の設計法について理解し、説明できるようになる。 - ・分離装置の設計法について理解し、説明できるようになる。 For production with chemical reactor and bio-reactor, The combination of each chemical processes is mostly important, together with optimization of reaction process and separation processes. Since the cost of the total separation processes are occupied 2/3 in whole production processes, the choices of optimal separation processes as well as their efficiency improvement are the most important key factors. In this lecture, the overview of reaction and separation processes is mentioned, together with elemental technologies and their application fields. Goals are as follows: - · Understanding of the design methods of reactors - · Understanding of the design methods of separation unit operations #### 教科書 /Textbooks 特になし / N.A. ### 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に適宜紹介する。/ Appropriate materials are intrduced during a lecture. ## 授業計画・内容 /Class schedules and Contents - 1 反応プロセス概論 / Overview of reaction process - 2 回分式反応器 / Batch reactor - 3 流通式反応器 / Continuous reactor - 4 分離プロセス概論 / Overview of separation process - 5 前処理技術 / Pretreatment technology - 6 膜分離 / Membrane separation - 7 抽出 / Extraction - 8 蒸留 / Distillation - 9 クロマトグラフィー / Chromatography - 10 晶析 / Crystallization - 11 生産プロセス概論 / Overview of production process - 12 医薬品等の生産プロセス / Pharmaceutical production - 13 食品・飲料の生産プロセス / Food and beverage production - 14 化成品の生産プロセス / Chemicals production - 15 まとめ/Summary ## 成績評価の方法 /Assessment Method レポート/ report: 50% プレゼンテーション / Presentation: 50% ## 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 特になし / N.A. ## ○プロセス設計学特論 (Advanced Process Design) #### 履修上の注意 /Remarks 講義は資料などのプリントを配布して行う。 The materials are hand out by printed matters. ### 担当者からのメッセージ /Message from the Instructor 高効率な生産プロセスを構築するためには、適切な反応プロセスと分離プロセスの選択と共に、組み合わせの最適化が必要である。今後益々高度化する生産プロセスの最適設計に対応できる技術者となってほしい。 To constructing the efficient production process, combination optimization is quite important, together with selection of proper reaction and separation processes. We wish to become you talented engineered to correspond with the suitable design of production process in future. ## キーワード /Keywords プロセス設計、単位操作、反応操作、分離操作 / Process design, Unit operation, Reaction engineering, Separation engineering 2012 2013 ## ○応用触媒工学特論 (Advanced Applied Catalysis) 担当者名 山本 勝俊 / Katsutoshi YAMAMOTO / エネルギー循環化学科(19~) /Instructor 履修年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 様々な化学工業プロセスで重要な役割を担っている触媒について学び、その働きについて理解する。代表的な化学工業プロセスでの触媒の役割、効果と触媒反応を理解し、それに関する英文科学論文を読みこなせるようになることを目標とする。 In this course, the properties and the behaviours of catalysts, which play an important role in various industrial chemical processes, will be studied. The objective of the course is to understand the reaction systems of catalysts employed in typical chemical processes with reading scientific papers written in English. #### 教科書 /Textbooks 特に指定しない/Not designated ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 特に指定しない/Not designated #### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス、触媒と化学工業/Guidance - 2 クラッキング 反応・プロセス /Cracking -reactions・process- - 3 クラッキング 触媒 /Cracking -catalysts- - 4 リフォーミング 反応・プロセス /Reforming -reactions・process- - 5 リフォーミング 触媒 /Reforming -catalysts- - 6 水素化脱硫 反応・プロセス /Hydrodesulfurization -reactions・process- - 7 水素化脱硫 触媒 /Hydrodesulfurization -catalysts- - 8 その他の触媒プロセス/Other catalytic processes - 9 発表、および討論 1 /Presentations and discussion 1 - 10 発表、および討論 2 /Presentations and discussion 2 - 11 発表、および討論 3 /Presentations and discussion 3 - 12 発表、および討論 4 /Presentations and discussion 4 - 13 発表、および討論 5 /Presentations and discussion 5 - 14 発表、および討論 6 /Presentations and discussion 6 - 15 まとめ/Summary ## 成績評価の方法 /Assessment Method 授業への参加/Participation 40% レポート/Report 60% #### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 授業で取り上げる触媒プロセスに関する英語論文を読み、それに関する発表をしてもらいます。 At the final part of the schedule, you have to make a presentation on catalytic processes referring at least one scientific paper written in English. #### 履修上の注意 /Remarks ### 担当者からのメッセージ /Message from the Instructor 出席点はつけません。発表や討論での発言など、積極的な授業への参加を期待します。 Constructive participation is highly expected. ## ○先端材料システム特論 (Advanced Materials Systems II) 担当者名 李 丞祐 / Seung-Woo LEE / エネルギー循環化学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description
新たな材料の発見や開発により我々の生活様式も大きく変わっている。例えば、ナノテクノロジーやバイオテクノロジーなどこれまでの材料技術の根幹を革新する新しい技術の進歩が著しく、情報通信、エネルギー、環境、医療などの多方面に影響を及ぼしている。本講義の到達目標は、最近注目されている先端材料について、その特性や機能が分子または原子レベルでどのように発現できるのか、またその構造解析にどのような技術が使われているのかを理解することにある。本講義はそれについて概説する。 Our life style has been greatly changed by the newly discovered and developed materials. The advancement of new technologies like nanotechnology and biotechnology, which have changed the basis of the conventional material technology, have influenced a lot of fields such as telecommunication, energy, environment, and medical. This lecture has a goal to understand recent topics regarding advanced materials, including characteristics and functions at atomic or molecular levels and their structural accessment. #### 教科書 /Textbooks 特に指定せず、講義の都度資料を配付する。 Special textbooks are not used. Instead, materials for the lecture are distributed when they are needed. ## 参考書(図書館蔵書には 〇) /References(Available in the library: 〇) 講義中に適宜紹介する。 Properly introduced when they are needed. #### 授業計画・内容 /Class schedules and Contents - 1 先端材料システムの概論 - 2 材料化学の現状と展望 - 3 先端材料とは?(課題発表:分子認識) - 4 先端材料の歴史 - 5 先端材料の分類:大きさと機能 - 6 先端材料の分類と特性:分子認識(課題発表:超分子化学) - 7 先端材料の分類と特性:超分子化学 - 8 中間のまとめ - 9 先端材料分析:表面分析(課題発表:構造と機能) - 10 先端材料分析:ナノ構造 11 先端材料評価:機能 - 12 先端材料評価:構造(課題発表:分子情報と処理) - 13 先端材料の応用:分子情報 14 先端材料の応用:情報処理 - 15 まとめ - 1 Introduction of the class - 2 Current status and future of materials chemistry - 3 What are advanced materials? (Subject presentation: Molecular recognition) - 4 History of advanced materials - 5 Classification and characteristics of advanced materials: Size and function - 6 Classification and characteristics of advanced materials: Molecular recognition (Subject presentation: Supramolecular chemistry) - 7 Classification and characteristics of advanced materials: Supramolecular chemistry - 8 Intermediate summary - 9 Analysis of advanced materials: Surface assessment (Subject presentation: Structures & functions) - 10 Analysis of advanced materials: Nanostructure - 11 Evaluation of advanced materials: Functions - 12 Evaluation of advanced materials: Structures (Subject presentation: Molecular information & processing) - 13 Application of advanced materials: Molecular information - 14 Application of advanced materials: Information processing - 15 Summary ## ○先端材料システム特論 (Advanced Materials Systems II) #### 成績評価の方法 /Assessment Method 課題発表/Presentation 50% 期末試験/Exam 20% レポート/Report 30% #### 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 英文資料をよく使います。文献調査や発表も講義範囲に入ります。 English references are often used. Reference search and presentation are also included in the class. ### 履修上の注意 /Remarks SEM, TEM, SPM、XPSなどの先端分析技術の概説を伴います。興味があれば、分析センターにて実物を確認すること。 The analytical equipments such as SEM, TEM, SPM and XPS will be outlined. It is recommended to confirm them at the instrumental center. #### 担当者からのメッセージ /Message from the Instructor 新しい材料の開発や機能創出には、適切な材料設計法の工夫が必要です。分子設計に基づく材料開発やその計測方法の基礎を学ぶことが本授業 の狙いです。 It is necessary to devise an appropriate approach for the creation of new materials. The aim of this lecture is to learn the base of molecular design and analysis techniques for the material development. ### キーワード /Keywords 先端材料、材料の分類と特性、分析技術 Aadvanced materials, Classification and characteristics of materials, Analytical techniques ## 環境化学プロセス特別講義 (Special Lectures on Chemical Processing for the Environment) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 謹義 クラス /Year /Credits /Semester /Class Format /Class ○コース長、松方正彦(朝見賢二)、山本勝宏(秋葉勇) 対象入学年度 2012 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 化学反応や化学プロセスに関する専門的な学術、最先端の技術を学ぶことを目的とする。本コース専任教員と学外非常勤講師でテーマを2つ設 定し、その分野での基礎理論から応用技術までを習得する。 This lecture aims to learn advanced science and engineering in chemistry and chemical processing. #### 教科書 /Textbooks 特になし/N.A. ## 参考書(図書館蔵書には 〇) /References(Available in the library: 〇) 特になし/N.A. #### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス (コース長)/ Guidance - 2 招聘教員① 講義 1 先進材料工学/ Lecture by Invited Lecturer 1 1 Advanced Materials - 集中講義 1 先進材料工学/ Intensive Lecture 1 1 Advanced Materials 3 非常勤講師① - 4 非常勤講師① 集中講義 2 先進材料工学/ Intensive Lecture 1 2 Advanced Materials - 5 非常勤講師① 集中講義 3 先進材料工学/Intensive Lecture 1 3 Advanced Materials - 講義 2 先進材料工学/ Lecture by Invited Lecturer 1 2 Advanced Materials 6 招聘教員① - 演習・課題①/ Exercise 1 - 8 招聘教員② 講義 1 先端化学プロセス工学/ Lecture by Invited Lecturer 2 1 Advanced Chemical Processing - 9 非常勤講師② 集中講義 1 先端化学プロセス工学/ Intensive Lecture 2 1 Advanced Chemical Processing - 集中講義 2 先端化学プロセス工学/ Intensive Lecture 2 2 Advanced Chemical Processing 10 非常勤講師② - 集中講義 3 先端化学プロセス工学/ Intensive Lecture 2 3 Advanced Chemical Processing 11 非常勤講師② - 12 招聘教員② 講義 2 先端化学プロセス工学/ Lecture by Invited Lecturer 2 2 Advanced Chemical Processing - 13 演習・課題②/ Exercise 2 - 14 レポート作成/ Report Preparation - 15 まとめ/Summary ### 成績評価の方法 /Assessment Method 講義への積極的な参加 50% 課題・レポート 50% Active participation to the class 50% Report 50% ## 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 特になし/ Nothing ## 履修上の注意 /Remarks #### 担当者からのメッセージ /Message from the Instructor 化学プロセスに関する専門的な学術、最先端の技術を多彩な講師陣から積極的に吸収しよう。 Learn advanced science and technology in chemistry and process engineering. O ## ○環境材料工学特論 (Advanced Environmental Materials Engineering) 塩澤 正三 / Masami SHIOZAWA / 非常勤講師 /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 謹義 クラス /Year /Credits /Semester /Class Format /Class 2004 対象入学年度 2012 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 金属材料、高分子材料、木質系材料、各種無機材料など、人類に多大の恩恵をもたらしてきた諸工業材料は、反面、その製造、利用、廃棄の段 階を通じて公害や地球規模での環境問題の原因となっていて、特に大きな人口を抱える発展途上国の急速な経済発展とともに深刻な影響が明ら かとなりつつある。 ここでは、環境負荷を軽減する、あるいは積極的に環境を改善する材料またはそのプロセスの技術について、できるだけ最新の情報を紹介し、 あるいは調査してもらう。これにより、到達目標として、環境負荷を低減する技術を提言できるより高度の力を持たせる。 This lecture introduces typical higher technologies to reduce environmental polution, not to give environmental burdens or to improve environment by using industrial materials, such as metals, polymer materials, wood-based materials and various inorganic materials. #### 教科書 /Textbooks プリントを適宜配布する。 Papers will be distributed in class. ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) エコマテリアル学 - 基礎と応用(日科技連出版社)、機械材料工学(工学図書)他 ## 授業計画・内容 /Class schedules and Contents - 1環境と材料① (オリエンテーション) - 2環境と材料② (環境と社会・法律他) - 3環境と材料③ (LCA分析他) - 4環境に配慮した材料設計① (材料のエコマテリアル化) - 5 環境に配慮した材料設計② (金属材料) - 6環境に配慮した材料設計③ (高分子材料) - 7環境に配慮した材料設計④ (無機材料) - 8環境に配慮した材料設計⑤ (繊維材料) - 9環境に配慮した材料設計⑥ (その他材料) - 10 環境調和未来材料① - 11 環境調和未来材料② - 12 環境調和未来材料③ - 13 工場見学 - 14 工場見学 - 15 まとめ - 1 Environment and Materials 1 (Orientation) - 2 Environment and Materials 2 (Environment and social Care and related Laws) - 3 Environment and Materials 3 (LCA) - 4 Design for Materials considering Environment 1 (Basic Concept) - 5 Design for Materials considering Environment 2 (Metals) - 6 Design for Materials considering Environment 3 (Polymers) - 7 Design for Materials considering Environment 4 (Inorganics) - 8 Design for Materials considering Environment 5 (Fibers) - 9 Design for Materials considering Environment 6 (Miscellaneous) - 10 Future Materials Harmonized with Environment 1 - 11 Future Materials Harmonized with Environment 2 - 12 Future Materials Harmonized with Environment 3 - 13 Factory Tour - 14 Factory Tour - 15 Summary ## ○環境材料工学特論 (Advanced Environmental Materials Engineering) ## 成績評価の方法 /Assessment Method 課題調査レポート 75% 工場見学レポート 25% Report of Research 75% Report of Factory Tour 25% #### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 適宜、指示をする。 Appropriately directed by lecturer. ### 履修上の注意 /Remarks 本分野は、地球規模で急速に進む環境破壊に対応して思想なり技術が急速に進展しているので、専門書などを用いた復習とともに文献検索など により最新の技術情報の調査を通じて理解を深めてほしい。 Review with appropriate text and search for recent technologies are required to understand this lecture. ### 担当者からのメッセージ /Message from the Instructor 取り扱う材料は、金属、高分子、各種無機材料、木質系材料で、応用分野はエレクトロニクス、エネルギー、医療、土木建築、各種工業など多 岐にわたります。課題調査は、テーマの調査結果の発表とともに、各自、レポートを作成のうえ提出します。工場見学は、環境、材料というキ ーワードで適切な見学先を決めます。 2 時限分まとめて 1 回となります。 This lecture concerns with metals, polymers, various inorganic materials, and wood-based materials. They have been used for electronics, energy, medical, construction, and so on. Each student conducts researches for specified themes and has presentations for research results. In addition, each student prepares and submits reports on the researches. Factory tour to a factroy concerning environment and materials will be implemented. ## ○環境応答生理学特論 (Advanced Ecological and Environmental Physiology) 担当者名 河野 智謙 / Tomonori KAWANO / 環境生命工学科 (19~) /Instructor 履修年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 国内外の最新の研究事例を紹介し、主として植物、微生物、原生生物が示す環境応答のメカニズムを議論する。特に生物が自然界における短期 的あるいは中長期的な環境変動および環境汚染等の人為的な環境変化に対して示す生理的応答反応および生態系での異種生物間の相互作用につ いて理解することを到達目標とする。 Data-oriented discussion on the recent research topics at biochemical, cell biological and molecular biological basis will be brought for deepening our understanding of the plant and microbial responses to the changing environments. #### 教科書 /Textbooks 指定なし ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 適官資料を指示 #### 授業計画・内容 /Class schedules and Contents - 1 生物の環境応答(イントロダクション) - 2 植物の生態・生理学 (1) - 3 植物の生態・生理学 (2) - 4 原生生物学と環境 (1) - 5 原生生物学と環境 (2) - 6 病原微生物と植物 (1) - 7 病原微生物と植物 (2) - 8 細胞内情報伝達 (1) - 9 細胞内情報伝達 (2) - 10 造行之發現制細 - 10 遺伝子発現制御 - 11 代謝制御 - 12 課題発表と研究討議 (1) - 13 課題発表と研究討議 (2) - 14 課題発表と研究討議 (3) - 15 まとめ - 1 Plants and microorganisms (an introduction) - 2 Plant Eco-Physiology (1) - 3 Plant Eco-Physiology (2) - 4 Protozoa and Environment (1) - 5 Protozoa and Environment (2) - 6
Plants and infectious microbes (1) - 7 Plants and infectious microbes (2) - 8 Cellular signaling (1) - 9 Cellular signaling (2) - 10 Controls in gene expression - 11 Metabolic regulations - 12 Oresentations and Discussion (1) - 13 Oresentations and Discussion (2) - 14 Oresentations and Discussion (3) - 15 Summary ## ○環境応答生理学特論 (Advanced Ecological and Environmental Physiology) 成績評価の方法 /Assessment Method レポート50% 課題発表50% Reports50% Oral presentation50% 事前・事後学習の内容 /Preparation and Review 授業に対する準備事項 /Preparation for the Class 受講者は、植物生理学、原生生物学、感染生理、細胞内情報伝達、遺伝子発現制御、代謝制御等の分野に精通していることが望ましい。 履修上の注意 /Remarks 担当者からのメッセージ /Message from the Instructor ## ○微生物機能学特論 (Advanced Functional Microbiology) 担当者名 森田 洋 / Hiroshi MORITA / 環境生命工学科(19~) /Instructor 履修年次単位2単位学期2学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象入学年度 2002 2003 2004 2005 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ## 授業の概要 /Course Description /Year of School Entrance 微生物は古くから発酵食品などに利用されてきたが、近年におけるバイオテクノロジーの急速な発展により、微生物の機能は食品・薬品工業、更には化学工業や環境浄化ビジネスなど様々な産業分野において応用されている。また微生物は高等動植物が存在できない極限環境にも幅広く生息している。このような特殊な微生物の機能を活用することが産業界から望まれており、本講義では微生物の様々な機能について理解を深め、微生物産業の将来を展望する能力を養う。 到達目標は以下の通りである。 - ・微生物の培養設計について提案ができる。 - ・種々の微生物機能に関して理解ができる。 - ・微生物産業に関する将来展望ができる。 Microorganisms are an important part of natural environments. This lecture aims to develop and refine your academic skills that are imperative in functional microbiology of environmental and industrial technology. This lecture is grouped into four parts: "industrial microbiology", "fermentation technology", "biocontrol science" and "environmental microbiology". Advanced knowledge on environmental microbiology will be lectured. To be able to outline the three topics shown below. - · Establishment of novel culture method - · Factors affecting microbial growth and function - · Future prospect of microorganism industry #### 教科書 /Textbooks なし/ None ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 適宜紹介する/ To be announced in class ## 授業計画・内容 /Class schedules and Contents - 1.発酵工学①【純粋培養】 / Fermentation Technology I 【Pure Culture】 - 2.発酵工学② 【混合培養】/ Fermentation Technology II 【Co-culture】 - 3.発酵工学③【培地設計】 / Fermentation Technology III 【Cultural Media】 - 4. 発酵工学④【培養設計】 / Fermentation Technology IV 【Cultural Methods】 - 5.生態微生物学①【窒素循環】 / Microbial Ecology I 【Nitrogen Cycle】 - 6.生態微生物学②【リン循環】/ Microbial Ecology II 【Phosphorus Methods】 - 7. 生態微生物学③【硫黄循環】/ Microbial Ecology III 【Sulfer Cycle】 - 8. 生態微生物学④【鉄循環】/ Microbial Ecology IV 【Iron Cycle】 - 9 . 生態微生物学⑤【炭素循環】 / Microbial Ecology V 【Carbon Cycle】 - 10.環境微生物学①【バイオレメディエーション概論】 / Environmental Microbiologyl 【Bioremediation】 - 11.環境微生物学②【バイオオーグメンテーション】 / Environmental MicrobiologyII 【Bioaugmentation】 - 12.環境微生物学③【バイオスティミュレーション】 / Environmental MicrobiologyIII 【Biostimulation】 - 13.環境微生物学④【ファイトレメディエーション】 / Environmental MicrobiologyIV 【phytoremediation】 - 14. 微生物産業の将来展望/ Future Prospect of Microorganism Industry - 15. まとめ/ Final review #### 成績評価の方法 /Assessment Method 試験/ Examination: 80% 課題/ Report: 10% 授業態度/ Class Participation: 10% ## 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class なし/ None ## ○微生物機能学特論 (Advanced Functional Microbiology) #### 履修上の注意 /Remarks 授業では幅広い内容を取り上げるため、専門書等を用いて復習することにより理解をさらに深めてほしい。 Students are requested to more understand by references. References are introduced during class. ## 担当者からのメッセージ /Message from the Instructor 本講義において、微生物の様々な機能について理解を深め、微生物産業の将来を展望する能力を養ってほしい。 Students are requested to get the new idea of how to apply microbial potential activities to microorganism industry. ## キーワード /Keywords Industrial Microbiology, Fermentation Technology, Microbial Ecology, Environmental Microbiology ## ○生物物理特論 (Advanced Biophysics) 櫻井 和朗 / Kazuo SAKURAI / 環境技術研究所 /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 謹義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2004 2012 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 生物物理のなかでも、放射光を用いたX線小角散乱に焦点をあてて、その基礎理論から実際のデータ解析までを概説する。また、数学的操作のツ ールとしてのMathematicaに関しても習得を目指す。 到達目標は以下のとおりである。 - * タンパク質の溶液物性に関する必要不可欠な散乱理論の基礎を理解する。 - * 自分で簡単な解析ができるようになる。 Among the field of biophysics, I will focus on the structural analysis of biopolymers with small angle X-ray scattering. The course will cover from the basics of scattering to the data analysis. As an analytical program, I will use Mathematica. Studying the basic scattering theory required to understand proteinsolutions. Obtain the skill to analyze the scattering data. ### 教科書 /Textbooks 配布プリント / Print Distribution ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 特になし/ Print Distribution if necessary - 散乱現象とは - フーリエ級数 - フーリエ級数 3 - 4 フーリエ変換 - 5 散乱の定式化 - 6 小角散乱 - 7 球と棒状物体からの散乱 - 8 放射光と散乱 - 9 データ解析 I - 10 データ解析 Ⅱ - データ解析 Ⅲ 11 - 12 演習Ⅰ - 13 演習Ⅱ - 14 演習Ⅲ - 15 まとめ - 1 What is the Scattering - 2 Fourier Series I - 3 Fourier Series II - 4 Fourier Transform - 5 Formulation of Scattering - 6 Small-angle Scattering - 7 Scattering from Spherical and Rod-like Objects - 8 Synchrotron Radiation and Scattering - 9 Data Analysis I - 10 Data Analysis II - 11 Data Analysis III - 12 Exercise I - 13 Exercise II - 14 Exercise III - 15 Summary ## ○生物物理特論 (Advanced Biophysics) ### 成績評価の方法 /Assessment Method レポート 50% 演習 50% Repoet 50% Exercises 50% 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 予習・復習を十分行うこと Good preparations for classes and reviews after classes will enhance your performance. 履修上の注意 /Remarks 担当者からのメッセージ /Message from the Instructor 2013 O ## ○計算化学特論 /Year of School Entrance (Advanced Computational Chemistry) 担当者名 上江洲 一也 / Kazuya UEZU / 環境生命工学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 化学の諸現象を理解するためのツールとして、ますますその威力を発揮している計算化学について学ぶ。代表的な計算化学ソフトを使って、計 算目的に適した活用法を選択できることと、Excelを用いた分子軌道計算を行い、計算化学の基礎理論を深く理解することを到達目標とする。 Computational chemistry is a powerful tool that can provide increased insight and understanding of many complex topics. The rapid advances in computer hardware and software for computational chemistry over the last decade allow meaningful chemistry calculations to be performed on standard desktop computers. #### 教科書 /Textbooks 特に指定しない。 Not specified. ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) Computational Quantum Chemistry ACADEMIC PRESS (ISBN 978-0-1256-9682-1) #### 授業計画・内容 /Class schedules and Contents - 1 計算化学の概要 / Standard computational methods - 2 量子力学の仮説と一般原理 / Foundational principles for Quantum Mechanics - 3 シュレディンガー方程式とその近似解法 / Approximate solution for the Schrödinger equation - 4 水素原子の原子軌道/Atomic orbital of Hydrogen Atom - 5 水素原子の動径分布関数/Radial distribution function of hydrogen atom - 6 Slater型分子軌道/Slater-type Molecular Orbital - 7 Gauss型分子軌道/Gaussian Molecular Orbital - 8 基底関数(1)STO-nG n=1,2 /Basic Sets (1) STO-nG n=1,2 - 9 基底関数(2)STO-nG n=3,4 /Basic Sets (2) STO-nG n=3,4 - 10 中間テスト / Midterm Exam - 11 応用事例(1)/Application Example (1) - 12 応用事例(2)/Application Example (2) - 13 応用事例(3)/Application Example (3) - 14 応用事例(4)/Application Example (4) - 15 応用事例(5)/Application Example (5) #### 成績評価の方法 /Assessment Method 平常点(レポート等) 20% 中間テスト 30% 最終レポート 50% Report 20% Midterm exam 30% Final report 50% #### 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 表計算ソフトが稼働するラップトップ型コンピュータ。 Laptop computer with a spread sheet software. ## 履修上の注意 /Remarks 初回講義時に指示する。 To be announced in the first lecture. 専門科目環境システム専攻 # ○計算化学特論 (Advanced Computational Chemistry) ## 担当者からのメッセージ /Message from the Instructor 表計算ソフトで分子軌道計算を行うことで、計算化学の基礎理論を理解し、計算化学ソフトウェアを適切に利用するための基盤にして欲しい。 Chemists and chemical engineers now have an additional tool available that is complementary to traditional experimental and theoretical techniques. So, I hope you can use the standard computational methods to deeply understand chemical phenomena. ## キーワード /Keywords 量子化学 Quantum chemistry ## ○生体材料特論 (Advanced Biomaterials) 担当者名 中澤 浩二 / Koji NAKAZAWA / 環境生命工学科 (19~) /Instructor 履修年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象入学年度 /Year of School Entrance | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | |------|------|------|------|------|------|------|------|------|------|------|------| | | | | | | | | | | | | 0 | 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 生体適合性材料は、医療器具、再生医療、人工臓器などの医療技術や細胞培養などの基礎研究分野において欠くことのできない材料である。本 講義では、生体材料とは何か、人工材料と生体組織あるいは細胞間で起こる反応、生体適合性材料の種類とその特徴について理解する。さらに 、バイオマテリアルの設計や利用などについて最新のトピックスを交えて、現在の動向の理解を深める。これらを通して、バイオマテリアルの 設計と利用に必要な知識を修得することを到達目標とする。 Biomaterial is any substance (other than drugs) or combination of substances synthetic and natural in origin, which can be used for any period of time, as a whole or as a system which treats, augments, or replaces any tissue, organ, or function of the body. In this lecture, we discuss the biomateriasls. #### 教科書 /Textbooks プリントを配布 / The materials are hand out by printed matters. ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 適宜、指示 / To be announced in the class. #### 授業計画・内容 /Class schedules and Contents - 1 バイオマテリアルとは / What are biomaterials? - 2 医療・診断デバイス / Medical devices - 3 生体適合性 / Biocompatibility - 4 高分子 / Polymers - 5 金属 / Metals - 6 セラミックス / Ceramics - 7 複合材料 / Composites - 8 細胞外マトリクス / Extra cellular matrices - 9 プレゼンと討論 1 / Presentation and Discussion 1 - 10 プレゼンと討論 2 / Presentation and Discussion 2 - 11 プレゼンと討論 3 / Presentation and Discussion 3 - 12 プレゼンと討論 4 / Presentation and
Discussion 4 - 13 プレゼンと討論 5 / Presentation and Discussion 5 - 14 プレゼンと討論 6 / Presentation and Discussion 6 - 15 まとめ/Summary #### 成績評価の方法 /Assessment Method レポート / Report 100% ### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 適宜、指示 / To be announced in the class. #### 履修上の注意 /Remarks #### 担当者からのメッセージ /Message from the Instructor 医療デバイス、細胞培養などの研究に従事している学生は、各自が利用するバイオマテリアルの理解に役立ててください。 This lecture supports a student studying the field of animal cell culture, tissue engineering, and DDS. ## ○生物センサー工学特論 (Advanced Bionsensor Engineering) 担当者名 礒田 隆聡 / Takaaki ISODA / 環境生命工学科 (19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 到達目標は以下のとおり 生化学物質計測のための電気化学と化学反応機構について最先端の知識を理解 できるようにする Attainment target is shown below: This lecture explain an electrochemistry for leading-edg measurement of biochemical substances and the mechanism of chemical reactions. #### 教科書 /Textbooks 教科書は初回の講義で紹介する。/ A textbook is introduced at first guidance in this lecture. ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) |- #### 授業計画・内容 /Class schedules and Contents - 1 代謝 - 2 代謝生産物と中間体 - 3 細胞機能と表層 - 4 バイオセンサ概論(1)【酵素電極】 - 5 バイオセンサ概論(2)【水晶振動子】 - 6 バイオセンサ概論(3)【表面プラズモン】 - 7 人工受容体の構築(1)【ペプチドの集積】 - 8 人工受容体の構築(2)【DNA・RNAの集積】 - 9 人工受容体の構築(3)【タンパク・抗体の集積】 - 10 微細加工技術(1)【フォトリソグラフィー】 - 11 微細加工技術(2)【ナノリソグラフィー】 - 12 生体材料のセンサ利用(1)【サイトカイン】 - 13 生体材料のセンサ利用(2)【タンパク・ペプチド】 - 14 生体材料のセンサ利用(3)【細胞・体組織】 - 15 まとめ - 1 Metabolism - 2 Products and intermediates made from a metabolism - 3 Cell function and the surface structure - 4 Electrochemical measurement (1) - 5 Electrochemical measurement (2) - 6 Electrochemical measurement (3) - 7 The principle of sensing (1) - 8 The principle of sensing (2) - 9 The principle of sensing (3) - 10 Micromachining technology making of a semiconductor (1) - 11 Micromachining technology making of a semiconductor (2) - 12 Use biomaterial for sensing (1) Cytokine - 13 Use biomaterial for sensing (2) Cell - 14 Use biomaterial for sensing (3) Living tissue, animals - 15 Summary #### 成績評価の方法 /Assessment Method 期末試験 90% レポート 10% Final exam 90% Report 10% # ○生物センサー工学特論 (Advanced Bionsensor Engineering) ## 事前・事後学習の内容 /Preparation and Review 授業に対する準備事項 /Preparation for the Class ## 履修上の注意 /Remarks ## 担当者からのメッセージ /Message from the Instructor 本講義では、バイオセンサーが生物の機能とエレクトロニクスから成り立っていることが理解できます。さらに知識を深めたいならば、生物と 電気化学の基礎を復習した方がよいでしょう。 You will learn at this lecture that a biosensor is composed of a function of living matters and electronics. If you would like to get more knowledge, you had better review the foundation of the biology and the electrochemistry. ## ○生態系管理学特論 (Advanced Ecological Management) 原口 昭 / Akira HARAGUCHI / 環境生命工学科(19~), 橋床 泰之 / Yasuyuki HASHIDOKO / 非常勤講師 /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 謹義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2004 2012 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 生態学を中心に、工学・農学・生物学など多角的な側面から生態系の保全や管理の手法について講述します。個体群や群集の機能、および化学 的環境因子と生物機能との相互関連を中心とした観点から土壌環境や陸水環境が生物に及ぼす影響と生物の環境形成作用、ならびに細胞機能や 分子生物学的観点からの生物・環境相互作用に関する研究について、最新の研究成果を含めて考究します。この講義では、さまざまな環境にか かわる問題に対して、生態学の観点から意見を述べることができるような知識を身につけることを到達目標とします。また、この講義では、受 講者各人に模擬講義を課します。 Methods for conservation and management of ecosystems based on ecological sciences will be explained with special reference to function of population and community, interaction between chemical environments and biological function, and mutualism between species. Interaction between biosphere and soil-hydrosphere, and interactive analysis between environment and organisms based on physiology and molecular biology will be discussed including recent research. The aim of this lecture is to get fundamental knowledges of ecology in order to express one's opinion for every environmental problem. Every student is required to present a mini lecture concerning ecological management in a seminar. #### 教科書 /Textbooks 指定しません(Nothing) ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に適宜紹介します (Show references within the lecture) - 生態系の構造と機能に関する基礎概念の確認 - 増殖の理論(ロジスティック曲線) 個体群生態学(1) - 個体群生態学(2) 環境と個体群増殖速度の関係 - 群集生態学(1) Lotka-Volteraの競争・捕食モデル - 5 群集生態学(2) 共生のモデル - 6 群集生態学(3) 資源とニッチ(Tilmanの理論) - 生態系(1) エネルギーと栄養段階 - 8 生態系(2) 生物地球化学的物質循環 - 9 生物多様性指数と多様性の理論 - 10 物質生産 - 群落光合成理論 11 - 12 物質循環と化学生態学 - 13 根圏共生系 - 模擬授業(1) 個体群と群集に関する模擬授業 14 - 15 模擬授業(2) 生態系と生物多様性に関する模擬授業 - 1 Structure and function of ecosystems (overview) - 2 Population ecology (1) Theory for population growth - 3 Population ecology (2) Factors affecting population growth - 4 Community ecology (1) Competition and predation - 5 Community ecology (2) Mutualism - 6 Community ecology (3) Resources and niche - 7 Ecosystems (1) Energy flow - 8 Ecosystems (2) Matter cycling - 9 Index of biodiversity and theory - 10 Theory of production - 11 Production of population - 12 Matter cycle and chemical ecology - 13 Mutualism in rhizosphere - 14 Lecture (1) Presentation about population and community - 15 Lecture (2) Presentation about ecosystem and biodiversity ## ○生態系管理学特論 (Advanced Ecological Management) #### 成績評価の方法 /Assessment Method 模擬授業 100% Teaching Practice 100% #### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 生物学、および生態学が基礎となる講義ですので、これらの基礎知識をできれば身に付けておいてください。 Fundamental knowledge of biology and ecology is required. ### 履修上の注意 /Remarks 受講者には、模擬講義形式の演習を課しますので、事前準備を十分に行ってください。 Preperation for teaching practice is required. #### 担当者からのメッセージ /Message from the Instructor 生態系の保全や管理に関する基礎知識について平易に解説します。これらの基礎知識は、生態系管理や環境アセスメントの実務において不可欠な内容ですので、このような方面への進路を考えている人には、積極的に受講することをお勧めします。 Fundamental knowlegde of conservation and management of ecosystems will be explained easily. The knowledge is necessary for practical official management of environmental management and protection. ### キーワード /Keywords 個体群・群集・生態系・多様性・物質生産 Population, Community, Ecosystem, Diversity, Matter production ## ○環境生物学特論 (Advanced Environmental Biology) 担当者名 上田 直子 / Naoko UEDA / 環境生命工学科 /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 水環境における自然現象と人為的要因に伴う汚濁現象、とくに富栄養化や有機汚染と生態系との関わりについて解説し、水質・底質管理や生態 系保全、環境修復手法など、水環境問題への対応のあり方について議論する。環境変動が生態系に及ぼす影響を深く理解し、水環境問題に対す る解決方法を考察できることを到達目標とする。 In the water environment near the urban area, the excessive natural and artificial load by the human activities impact on the ecosystem. In this lecture, students will acquire practical knowledge of the phenomenon of eutrophication, the relationship between organic pollution and biological indicator, the conservation of environment, the material circulation and the recent research results. #### 教科書 /Textbooks 指定せず(Nothing) ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 河口・沿岸域の生態学とエコテクノロジー 潮間帯の生態学 生物海洋学入門 Ecology and Eco-technology in Estuarine-Coastal Area Intertidal Ecology Biological Oceanography An Introduction - 1 はじめに - 2 富栄養化 - 3 富栄養化と植物プランクトン - 4 海底生態系(環境要因) - 5 海底生態系(ベントス) - 6 干潟生態系 - 7 感潮域の生態系 - 8 クルージング - 9 河川生態系(有機汚染) - 10 河川生態系(水生昆虫) - 11 環境修復(指標生物) - 12 環境修復(技術) - 13 研究事例(貧酸素) - 14 研究事例(有機汚染) - 15 まとめ - 1 Overview of environmental biology - 2 Eutrophication - 3 Eutrophication and phytoplankton - 4 Benthic environment in coastal area - 5 Benthic organisms in coastal area - 6 Ecosystem in tidal flat - 7 Ecosystem in estuary - 8 Exercise - 9 Ecosystem of freshwater(organic pollution) - 10 Ecosystem of freshwater(benthic organisms) - 11 Bio-remediation (indicator organisms) - 12 Bio-remediation(technique) - 13 Recent research result (oxygen-deficiency) - 14 Recent research result(organic pollution) - 15 Conclusion ## ○環境生物学特論 (Advanced Environmental Biology) ### 成績評価の方法 /Assessment Method 課題・発表 40% レポート 40% 講義への積極的な参加 20% Assignments 40% Mid-term Paper 40% Active Participation 20% ### 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 生物学、生態学および生態工学が基礎となるので、これらの基礎知識を身につけておくこと。 Students are required the fundamental skills of biology, ecology and eco-engineering. ## 履修上の注意 /Remarks 配布資料を予習、復習に活用し、授業の理解を深めること。 Students are required to read all the assigned readings prior to the class. ## 担当者からのメッセージ /Message from the Instructor ## ○地球化学特論 (Advanced Geochemistry) 担当者名 西尾 文彦 / Fumihiko NISHIO / 非常勤講師 /Instructor 履修年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象入学年度 /Year of School Entrance 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 地球の歴史において、約一万年前から現在に至るまで、私たちの気候環境はたいへん安定した時代である。地球温暖化が進行する中で、未来の 地球気候システムがどのように変化していくのか。グリーンランドや南極の氷床で掘削されたコアには、急に訪れる寒さや暖かい気候への変化 が示されている。地球の歴史から未来を考えることができる。地球の歴史の謎を紐解くためには安定同位体等の地球化学的な知識と技術が必要 である。氷の中から発見する地球の歴史を知る面白さを述べる。 到達目標は、地球化学的な知識と技術をもとに地球環境を理解できるようになることである。 How does the climate system in the future Earth change with progress of global worming? Changes of climate in the Earth have been recorded in the core excavated from ice sheets of Green Land and South Pole. We can concider the future Earth from the Earth history. To clarify mystery of the Earth history, geochemical knowledge and technology are required. This lecture explains interests to know the Earth history discovered from ice sheets. Students will aquire geochemical knowledge and technology that are necessary for understanding Earth history. #### 教科書 /Textbooks 大気・水圏の地球化学 地球化学講座(6) 日本地球化学会監修 培風館 English texts are
provided upon necessity. ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 地球温暖化と海 東京大学出版会 野崎義行著 English texts are provided upon necessity. - 1 地球化学の概要 - 2 地球の歴史 - 3 安定同位体の基礎 - 4 安定同位体の地球化学における利用 - 5 南極やグリーンランドの氷床の地球化学的解析法 - 6 氷床に残された大気中の二酸化炭素濃度から何が読み取れるか - 7 氷床に残された大気中のメタン濃度から何が読み取れるか - 8 氷床に残された不純物から何が読み取れるか - 9 氷床に残された火山灰から何が読み取れるか - 10 氷に残された記録と地球システムの関連について - 11 氷に残された記録と気候変動の関連について - 12 過去100万年の地球システム変動を地球化学的に読み解く(1) - 13 過去100万年の地球システム変動を地球化学的に読み解く(2) - 14 総括 - 15 演習 - 1 Introduction to Geochemistry - 2 History of the Earth - 3 Fundamentals of Isotope - 4 Utilization of Isotope in Geochemistry - 5 Geochemical Analysis of Ice Sheet in the South Pole and Green Land - 6 What is revealed from CO2 concentration in atmosphere remained in ice sheet. - 7 What is revealed from CH4 concentration in atmosphere remained in ice sheet. - 8 What is revealed from impurities remained in ice sheet. - 9 What is revealed from volcanic ash remained in ice sheet. - 10 Relation between the recored remained in ice sheet and Earth system - 11 Relation between the recored remained in ice sheet and chage of climate - 12 Geochemical clarification of change of the Earth system in the past 100 million years 1 - 13 Geochemical clarification of change of the Earth system in the past 100 million years 2 - 14 Summary - 15 Exercise ## ○地球化学特論 (Advanced Geochemistry) #### 成績評価の方法 /Assessment Method 講義への積極参加 30% レビューシート 30% レポート 40% Active participation 30% Review 30% Report 40% #### 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 地球化学の参考書などを目にして、内容の予備知識を持っていただきたい。 Read the textbook and/or any references before the classes. ### 履修上の注意 /Remarks レビューシートとレポートは必須です。 Review and report must be required. ## 担当者からのメッセージ /Message from the Instructor 地球温暖化が進行する中で、未来の地球の気候システムがどのように変化していくのでしょうか。地球の歴史から未来を考えることができる。 そして、氷の中から発見する地球の記録と歴史を知る面白さを感得していただければ幸いである。 How does the climate system in the future Earth change with progress of global worming? We can consider the future Earth from history of the Earth. It is grad to learn the interests to know the Earth records and history discovered from ice sheets. ## ○都市環境マネジメント特論 (Advanced Urban Environmental Management) 松本 亨 / Toru MATSUMOTO / 環境技術研究所 /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2002 2004 2012 2013 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 北九州市をはじめとする日本の経済発展と環境問題への対応は、現在、環境問題に直面するアジア等の諸国の先行モデルとして高い移転可能性 を持つと言える。本講義の受講生は、環境問題の発生メカニズムとその対策について、日本及びアジアの諸都市の比較研究を行い、さらにアジ アを中心とした途上国への移転可能性について考察するための能力を身につける。 Students will acquire practical knowledge of urban environmental management model in Japan and its applicability to the developing countries through thought experiment. First, empirical experiences for overcoming industrial pollution and urban environmental management in Japan and Kitakyushu are introduced. Second, transferability of the "Kitakyushu model" to the developing countries is discussed. #### 教科書 /Textbooks 特に指定しない ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 多数(講義中に指示する) #### 授業計画・内容 /Class schedules and Contents - 1 日本の公害対策経験と北九州モデル【日本の公害対策の歴史】 - 2 日本の公害対策経験と北九州モデル【北九州市の公害対策の歴史】 - 3 日本の公害対策経験と北九州モデル【大気汚染対策の事例】 - 4 日本の公害対策経験と北九州モデル【水質汚濁対策の事例】 - 5 東アジア都市の都市環境管理の比較【中国の都市環境管理】 - 6 東アジア都市の都市環境管理の比較【韓国の都市環境管理】 - 北九州モデルの適用可能性 - 都市環境管理の方向と評価基盤【環境指標】 - 9 都市環境管理の方向と評価基盤【環境勘定・会計の基礎】 - 10 都市環境管理の方向と評価基盤【環境勘定・会計の応用】 - 11 新たな都市環境政策の潮流【OECD審査レポート:日本】 - 12 新たな都市環境政策の潮流【OECD審査レポート:韓国】 - 13 新たな都市環境政策の潮流【OECD審査レポート:中国】 - 14 新たな都市環境政策の潮流【グリーン成長戦略】 - 15 まとめ - 1 Environmental management experience in Japan (environmental management of Japan) - 2 Environmental management experience in Japan (environmental management of Kitakyushu) - 3 Kitakyushu model for overcoming industrial pollution (countermeasure against air pollution) - 4 Kitakyushu model for overcoming industrial pollution (countermeasure against water pollution) - 5 Conparative study on urban environmental management among cities in East Asia (China) - 6 Conparative study on urban environmental management among cities in East Asia (Korea) - 7 Applicability of Kitakyushu model to developing countries - 8 Urban environmental management and environmental evaluation (environmental indicators) - 9 Urban environmental management and environmental evaluation (basic concept of environmental accounting) - 10 Urban environmental management and environmental evaluation (application of environmental accounting) - 11 New trends in urban environmental management (Japan) - 12 New trends in urban environmental management (Korea) - 13 New trends in urban environmental management (China) - 14 New trends in urban environmental management (green growth strategy) ## 成績評価の方法 /Assessment Method 平常点(講義への積極的参加) 事例報告・討論 40% レポート 40% Positive participation in lecture 20% Case study & Discussion 40% Final report 40% ## ○都市環境マネジメント特論 (Advanced Urban Environmental Management) #### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 授業毎に指示する。 #### 履修上の注意 /Remarks #### 担当者からのメッセージ /Message from the Instructor 途上国の諸都市がそれぞれの置かれた状況を踏まえ、日本の環境対策の成功と失敗の経験を教訓として活かしていくことができれば、日本がかつて経験したような深刻な環境問題を回避できる可能性があります。多くの情報をもとに、各国、各都市にあった政策・対策を自分の頭で考え、提案してもらいます。 It is important that various cities in the developing countries learn from environmental management experiences of success and failure in developed countries like Japan. There is a possibility that they can evade serious environmental problems that Japan experienced before. Students will be required to propose the policy and measures for each country and each city based on each situation. O ## ○環境政策特論 /Year of School Entrance (Advanced Environmental Policy and Administration) 担当者名 乙間 末廣 / Suehiro OTOMA / 環境生命工学科 /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 授業では、国内外の学術雑誌等の資料を基に、環境政策に関する最新の動向をレビューし、その評価と今後の方向性をさぐる。これらの課程を 通して、研究テーマとなる課題を発見する能力を獲得することが到達目標である。 各受講生が独自の環境分野をテーマに選定し、輪番制の発表・討論形式で進め、最終結果をレポートにまとめる。 In the class the latest developments are reviewed and searched future directions on environmental policy based on the materials of domestic and foreign academic journals. It is a goal to attain capability to find research issues through the process. Each student is given a specific topic to review and evaluate a state-of-the-art of environmental policy related to it, and make its final report and presentaion for discussion in the class. #### 教科書 /Textbooks 特になし/None ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 特になし/None #### 授業計画・内容 /Class schedules and Contents 以下のようなテーマ(例)を選定し、発表と討議を中心に進める。 Students are required to make their own case studies individually and reports for presentations and discussions. Topics of the case studies are examplified as follows: - 地球環境と環境マネジメント (Environmental mamagement of global issues) - 地域環境と環境マネジメント (Environmental management of regional issues) - 企業・組織における環境マネジメントシステム (Environmental management in companies and/or organaizations) - 環境影響評価の実際と課題(Practices and problems of environmental impact assessment) - 途上国の開発と環境(Environment and Development of developing countries) - 環境国際協力 (International environmental cooperation) 第 1回 本講義の概要、進め方(Overview of the class and lecture) 第 2回 トピックの選定(Determination of a topic for a case study) 第 3~ 8回 中間レポート発表と討論(Student's interim presentation and discussion) 第9~14回 最終レポート発表と討論(Student's final presentation and discussion) 第15回 まとめ (Summary) #### 成績評価の方法 /Assessment Method 積極的な授業参加(Active learning) 30% 発表 + レポート(Case study & report) 70% 受講生に課題を与え、授業での成果発表と作成レポートを合わせて評価する A written report on his specific report are evaluated together with its presentation in the class. ### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 特になし/None #### 履修上の注意 /Remarks 特になし/None ## 担当者からのメッセージ /Message from the Instructor 自らの研究テーマを環境政策の観点から考え、制度やシステムの改善を探ること。 A student is required to see into an object system of his research from the viewpoint of environmental policy and administration, and propose possible improvements in its institution. # ○環境政策特論 (Advanced Environmental Policy and Administration) ## ○環境経営戦略特論 (Advanced Sustainable Management) 二渡 了 / Tohru FUTAWATARI / 環境生命工学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 2004 2012 対象入学年度 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 環境に対して企業は、従前の受動的な対応から、能動的・積極的対応へと変化してきている。エンド・オブ・パイプ技術が中心であった環境ビ ジネスが、環境調和型製品の設計・生産、循環型・ゼロエミッション型技術の事業化、さらに環境対応型社会システムの一端を担う金融・情報 といったサービス産業などへ環境ビジネスが拡大・展開している。本講義では、環境に配慮した経営戦略や商品開発について実践的な手法を学 ぶ。 到達目標は次のとおりである。 - ・環境経営及び環境ビジネスに関して、専門的かつ創造的・実践的知識をもつ。 - ・環境経営及び環境ビジネスに関して、高度な学術研究の立場から問題に対処できる思考力と判断力をもつ。 - ・環境経営及び環境ビジネスに関して、より高度な見地からの研究を遂行する意欲、態度をもつ。 Enterprise activities for environmental protection and conservation have been changing in more active. Environmental business based on end-of-pipe technology turned into new business, design and production of environment harmonized product, zero-emission, and service industry linked social system in favorable environment. In this lecture, students will acquire practical technique for sustainable management. Attainment targets are as follows: To get the professional, creative and practical knowledge on environmental management and business, To be able to make enforcement, judgment and representation from the standpoint of environmental management and business, To have the interest and motivation in conduction of specialized research on environmental
management and business. #### 教科書 /Textbooks 授業中にプリントを配付する。 Distribute printing ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 多数あるので、授業中に紹介する。 Introduce in lecture ## ○環境経営戦略特論 (Advanced Sustainable Management) #### 授業計画・内容 /Class schedules and Contents - 1 本講義のねらい、概要、進め方 - 2 環境ビジネスの状況 - 3 環境ビジネスに関する政策 - 4 環境ビジネスに関する計画 - 5 環境マネジメントシステム - 6 環境調和型技術・環境配慮設計 - 7 ゼロエミッション型技術の事業化 - 8 環境ビジネスにおける異分野連携 - 9 環境ビジネスの海外展開(東アジア地域) - 10 環境ビジネスの海外展開(東アジア以外のアジア地域) - 11 環境ビジネスの新潮流 - 12 事例検討(環境ビジネスモデルの設定) - 13 事例検討(環境ビジネスモデルの評価) - 14 事例検討(環境ビジネスモデルの最適化) - 15 まとめ - 1 Overview of the lecture - 2 Outline of environmental business - 3 Policy for environmental business - 4 Planning for environmental business - 5 Environmental management system - 6 Environment-friendly technology, and design for environment - 7 Commercialization of zero-emission technology - 8 Cooperation in different fields for environmental business - 9 Overseas expansion of environmental business in East Asia - 10 Overseas expansion of environmental business in other than East Asia - 11 New tends in environmental business - 12 Case study (Setting of the environment business model) - 13 Case study (Evaluation of the environment business model) - 14 Case study (Optimization of the environment business model) - 15 Review #### 成績評価の方法 /Assessment Method 積極的な授業参加 50% レポート 50% Active learning 50% Report of short research 50% #### 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class なし No preparation ## 履修上の注意 /Remarks ## 担当者からのメッセージ /Message from the Instructor 2013 ## ○環境情報システム特論 (Advanced Environmental Information Technology and Computer Simulation) 担当者名 野上 敦嗣 / Atsushi NOGAMI / 環境生命工学科(19~) /Instructor 履修年次単位2単位学期2学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ## 授業の概要 /Course Description 環境シミュレーションや地理情報システム(GIS)の発達、国土数値情報や植生データ等デジタルデータベースの整備、センサ・無線技術を活用した環境モニタリング手法の普及など、環境情報システム技術は急速に発展・進化している。研究論文、シンポジウムや展示会、もしくは企業訪問によって、技術開発や適用事例の最新状況を調査し、現状課題の把握と今後の方策を提示することを到達目標とする。 Environmental information technologies, such as computational simulation and geographic information systems (GIS), digital databases and national spatial data infrastructure and vegetation data, and environmental monitoring techniques utilizing wireless sensor technology, have been evolving very rapidly. Students are encouraged to study the current state of technology development and advanced application by research papers, symposiums and exhibitions, or visiting companies, and to understand current issues. The goal of this cource is to make presentation on the future way of environmental information technology and its application regarding students's reserch field. #### 教科書 /Textbooks 特になし。 None ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 文献を別途指示する。 Literatures will be shown in the lecture. #### 授業計画・内容 /Class schedules and Contents - 1~4 環境シミュレーションに関する最近の理論と応用 - 5~7 GISや環境情報システムに関する最近の話題 - 8~11 ITを中心とした技術経営に関する最近の話題 - 12~14 環境情報システムに関わる総合的討論 - 15 まとめ - 1~4 Recent theory and practice on environmental simulation - 5~7 Recent topics on GIS and environmental information system - 8~11 Recent topics on Management of Technology forcused on information technology - 12 ~ 14 Comprehensive discussion related to environmental information system - 15 Review #### 成績評価の方法 /Assessment Method 取組み態度 20% レビュー報告 40% 課題研究発表 40% Attitude 20% Review 40% Peresentation of project work 40% #### 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 特になし None ### 履修上の注意 /Remarks # ○環境情報システム特論 (Advanced Environmental Information Technology and Computer Simulation) ## 担当者からのメッセージ /Message from the Instructor 環境に関わる情報や情報技術に強い関心を持ち、自発的に学習すること。 Have a strong interest in environment-related information and information technology, and bewilling to study. ## ○環境化学特論 (Advanced Environmental Chemistry) 門上 希和夫 / Kiwao KADOKAMI / エネルギー循環化学科 /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 2012 対象入学年度 2004 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department ## 授業の概要 /Course Description 微量有害物質のヒトや生態系への影響を把握することは,安全・安心な社会の創造に必須のものである。本科目では,環境中の有害化学物質の 環境リスクを把握するために必要な環境濃度や暴露量の求め方,濃度や毒性情報からどのようにリスク評価を行うかを学ぶ。到達目標は,次の 通りである。 - 分析手法や分析機器および分析精度管理を理解し、微量有害物質の新規分析法を開発できる。 - 微量有害物質の環境中での挙動を理解し,生物への蓄積レベルを判断できる。 - 暴露情報と毒性データから,ヒトの健康リスクや生態リスクを推計評価できる。 Environmental risk assessment is essential to create the safe society. In this subject, students will study methods to measure concentrations of micro-pollutants and their fates in the environment. Also students will learn the methods of exposure assessment and risk assessment of micropollutants. The final goals of this subject are as follows; - (1) Development of new analytical methods of micro-pollutants by comprehending analytical procedures, analytical instruments and QC/QA. - (2) Evaluation of accumulation levels of micro-pollutants in organisms by understanding the fate of them in the environment. - (3) Evaluation of environmental risk by micro-pollutants using exposure data and toxicity data. #### 教科書 /Textbooks 適 官 配 布 Distribution of an original textbook #### 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 適宜指示 Suggestion of suitable references ## ○環境化学特論 (Advanced Environmental Chemistry) #### 授業計画・内容 /Class schedules and Contents - 1 概論 - 2 化学物質分析法演習(抽出法) - 3 化学物質分析法演習(精製法) - 4 化学物質分析法演習(GC-MS) - 5 化学物質分析法演習(LC-MS) - 6 環境動態演習(概論) - 7 環境動態演習(親水性化学物質) - 8 環境動態演習(疎水性化学物質) - 9 環境動態演習(生物濃縮) - 10 環境リスク評価演習(概論) - 11 環境リスク評価演習(暴露評価) - 12 環境リスク評価演習(リスク評価) - 13 環境リスク評価演習(生態リスク評価) - 14 発表 - 15 まとめ - 1 Introduction - 2 Practice on chemical analysis (Extraction) - 3 Practice on chemical analysis (Clean-up) - 4 Practice on chemical analysis (GC-MS) - 5 Practice on chemical analysis (LC-MS) - 6 Practice on environmental fate of chemicals (Introduction) - 7 Practice on environmental fate of chemicals (Hydrophilic chemicals) - 8 Practice on environmental fate of chemicals (Hydrophobic chemicals) - 9 Practice on environmental fate of chemicals (Biomagnification) - 10 Practice on environmental risk of chemicals (Introduction) - 11 Practice on environmental risk of chemicals (Exposure assessment) - 12 Practice on environmental risk of chemicals (Risk assessment) - 13 Practice on environmental risk of chemicals (Ecological risk assessment) - 14 Presentation - 15 Conclusion ### 成績評価の方法 /Assessment Method 発表 20% 議論・討議 20% レポート 60% Presentation 20% Discussion 20% Final Report 60% #### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 課題に関して調査研究していく過程及びその結果得られた知識が共に重要である。手を抜くと発表後の議論で恥をかくことになる。 Since the process of study on the subjects given and the results obtained by self-learning are important, you should be expected to do independent study. ## 履修上の注意 /Remarks 日本語・英語の隔年開講(2013年度は日本語)。但し,英語(日本語)の受講希望者がいない場合は,日本語(英語)で開講。学会形式で発表及び議論をする。発表者は与えられた課題について周辺情報も含め十分に調査,考察した内容を発表する。また,受講者は積極的に発言して発表者・他の受講者と議論をすること。 Official language for this subject changes every other year: Japanese and English. The year of 2013 is Japanese. Presentation and discussion as an academic conference will be conducted. The presenters should make presentation after sufficiently investigating the topic given. Audiences should ask questions and discuss what they want to know in detail. ## 担当者からのメッセージ /Message from the Instructor 環境化学に関する新しい知識や情報を自分で調べ,それらを消化して自分のものとすることを目標とする。身につけた技術・ノウハウは,環境 化学などの学術分野だけではなく,社会に出ても有用である。 The target of the class is that students will independently investigate a topic related to chemical issues and fully understand the contents of the topic. ## ○環境保全工学特論 (Advanced Environmental Preservation Engineering) 担当者名 石川 精一 / Seiichi ISHIKAWA / エネルギー循環化学科 /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2002 2003 2004 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | | 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 到達目標は以下の通り。 /Year of School Entrance 環境測定や環境保全、環境浄化、浄水処理、下水処理、各種産業廃水処理、廃棄物中間処理、廃棄物最終処分等、環境に関わる装置・プロセス について、その原理や機能、特徴を理解すると共に、運転方法や維持管理方法、種々の問題とその解決方法について学ぶ。また、最新技術・装 置の紹介や将来に向けた新たな環境装置・システムの設計、国情や地域の実情に適した環境装置・システムの設計を試みる。 The attaining objectives are as follows. The instruments and processes related to environment such as measurement of environmental pollution, environmental preservation, environmental purification, water purification, sewage treatment, treatment of industrial wastewater, intermediate treatment and final disposal of wastes, etc. are explained. Students will learn their operation, maintenance and problem-solution methods understanding their principle, function and characteristic. Further, the newest technology and instrument are introduced. New environmental instrument and system for the future and ones in conformity with the nation or local situation are also designed. #### 教科書 /Textbooks 講義の都度資料を配布する。 Handout ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に適宜紹介する。 Introduce properly. ## ○環境保全工学特論 (Advanced Environmental Preservation Engineering) #### 授業計画・内容 /Class schedules and Contents - 1概論 - 2 生物処理技術 - 3膜処理技術 - 4 吸着処理技術 - 5 光化学的処理技術 - 6 凝集沈殿処理技術 - 7 浄水処理装置・プロセスの設計、運転及び維持管理 - 8中水処理装置・プロセスの設計、運転及び維持管理 - 9下水処理装置・プロセスの設計、運転及び維持管理 - 10廃棄物処分場廃水処理装置・プロセスの設計、運転及び維持管理 - 11食品廃水処理装置・プロセスの設計、運転及び維持管理 - 12金属廃水処理装置・プロセスの設計、運転及び維持管理 - 13汚泥処理装置・プロセスの設計、運転及び維持管理 - 14廃棄物処理・処分装置・プロセスの設計、運転及び維持管理 - 15廃水処理及び水質管理指導 - 1 Overview - 2 Biological treatment - 3 Membrane separation - 4 Adsorption - 5 Photochemical treatment - 6 Coagulation sedimentation - 7 Design, operation and maintenance of water purification
process - 8 Design, operation and maintenance of wastewater reuse process - 9 Design, operation and maintenance of sewage treatment process - 10 Design, operation and maintenance of treatment of wastewater from waste disposal site - 11 Design, operation and maintenance of treatment of wastewater from food industry - 12 Design, operation and maintenance of treatment of wastewater from metal industry - 13 Design, operation and maintenance of sludge treatment process - 14 Design, operation and maintenance of wastes treatment process - 15 Guidance of wastewater treatment and water quality management ## 成績評価の方法 /Assessment Method 最終レポート40% Final report 40% 中間レポート30% Intermediate report 30% 日常の授業への取り組み30% Attitude to the lecture 30% ## 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 事前に配布された資料は予習をしておく。 Prepare for lessons using handout. ## 履修上の注意 /Remarks 使用言語(2013年度:英語、2014年度:日本語)、英語による受講希望者がなければ2013年度も日本語開講。 Official language for this subject: English in 2013, Japanese in 2014. ## 担当者からのメッセージ /Message from the Instructor レポートは講義内容に沿ったものを高く評価する。 Make much of the report related to lecture. ## キーワード /Keywords 水処理 汚泥処理 設計 運転 維持管理 Water treatment Sludge treatment Design Operation Maintenance 2012 2013 O ## ○資源循環技術特論 (Advanced Recycle Engineering) 安井 英斉 / Hidenari YASUI / エネルギー循環化学科(19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2004 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 地球全体として持続可能な循環型社を構築するためには、環境に著しい負荷を与えない合理的な廃棄物・排水処理システムを考えることは大切 である。本科目ではシステムを最適化・評価するためのノウハウとして、商用プロセスシミュレーターを使いながら化学工学的なアプローチで 廃棄物・排水処理システムを表現することを深く学ぶ。廃棄物・排水の成分は複雑で、その上、処理システムも様々なユニットプロセスで構成 されている。プロセスコンピューティングのスキルによって、これらを数学的に理解し、適切なシステムを検討できるようになることが本科目 の到達目標である。 Application of mathematical models has become a standard practice in wastewater/solid treatment plant design, optimisation and operational control. There are many state-of-the-art models currently available for different unit processes applied at wastewater/solid treatment plant. These models have been implemented in different commercial process simulators and are readily available for use in engineering, consulting and academic sectors. Although, the commercial process simulators are easy to use, the magnitude and complexity of biochemical, and physico-chemical reactions involved in wastewater treatment make it challenging for the first time practitioner to adequately grasp the intricate details of the model. As the advantage of modelling in wastewater treatment are well accepted, the intention of the course is to familiarise the first-time user to important basic fundamentals and terminologies used in present day wastewater/solid treatment models. #### 教科書 /Textbooks 特に指定せず、講義の都度資料を配付する。 Handout #### 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に適宜紹介する。 Suggested during the class. ## ○資源循環技術特論 (Advanced Recycle Engineering) #### 授業計画・内容 /Class schedules and Contents - 1 汚濁物質除去概論 - 2 微生物反応の概要(物質収支) - 3 微生物反応の概要(酸化還元) - 4 環境分野における物質収支の表し方 - 5 バイオマスの分解/資源化反応の表し方 - 6 微生物反応の概要(増殖と死滅) - 7 メタン発酵プロセスの数学的表現 - 8 メタン発酵プロセスのシミュレーション - 9 活性汚泥プロセスの数学的表現 - 10 活性汚泥プロセスのシミュレーション - 11 固液分離プロセスの数学的表現 - 12 固液分離プロセスのシミュレーション - 13 排水と廃棄物の処理/資源化システムの数学的表現 - 14 排水と廃棄物の処理/資源化システムのシミュレーション - 15 まとめ - 1 Overview of environmental pollution - 2 Microbial reaction (material balance) - 3 Microbial reaction (energy from oxidation/reduction) - 4 Material conservation in environmental engineering - 5 Engineering expression of system response - 6 Microbial reaction (growth and decay) - 7 Mathematical description of unit-processes (anaerobic digestion process) - 8 Computer simulation of anaerobic digestion process - 9 Mathematical description of unit-processes (activated sludge process) - 10 Computer simulation of activated sludge process - 11 Mathematical description of separation processes - 12 Computer simulation of separation process - 13 Plant-wide modelling (I) (Petersen matrix-based customisation) - 14 Plant-wide modelling (II) (simulation of the customised model) - 15 Review ### 成績評価の方法 /Assessment Method 積極的参加(予習・復習による理解度) 50% レポート発表 50% Active learning 50% Presentation 50% ## 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class プロセスシミュレータを用いるので、ノートブックコンピュータを持参すること(Windowsのみ) Prepare your own laptop computer to install the process simulator (Windows only). #### 履修上の注意 /Remarks 使用言語は英語とするが、英語による受講希望者がなければ日本語でも開講する。 プロセスシミュレータを用いるので、2コマ×7週の講義とする。 Official language: English unless specified. Two slots (3 hrs /week) x seven weeks. ## 担当者からのメッセージ /Message from the Instructor 博士前期課程の資源循環技術の発展版なので、これを予め受講していることが望ましい。 Students are advised to attend the lecture of Recycling Engineering (Master course) prior to the class. ## キーワード /Keywords 化学工学、排水処理、微生物反応、物理化学反応 Chemical engineering, microbial reaction, physico-chemical reaction, wastewater enginerring ## ○水圏環境工学特論 (Advanced Aquatic Environment EngineeringAdvanced Aquatic Environment Engineering) 担当者名 安井 英斉 / Hidenari YASUI / エネルギー循環化学科(19~) /Instructor 履修年次単位2単位学期2学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class // Control / Con 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Year of School Entrance </td 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 水中に放出された物質が化学的、生物学的に反応しつつ分解・除去されていく過程を物理的、化学的な意味を把握しつつ、数式として表現する 技術を深く学習する。本講義は特に流体解析(Computational Fluid Dynamics)に焦点を当て、高度なデータ手法解析やシミュレーションのノウハ ウも把握する。水質化学、水圏生物学、流体力学に関わる分野を体系的に連関づけ、これによって様々な要素が絡む複雑な問題を解決していく 能力を得ることが本科目の到達目標である。 The hydrodynamic system coupled with biological and chemical reactions is described using computational fluid dynamics (CFD). Integrated methods are also explained with hydraulics, aquatic chemistry, and biology in wasetwater treatment processes. #### 教科書 /Textbooks 必要に応じて資料を配布する。 Handouts ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に適宜紹介する。 References are introduced in lecture, if necessary - 1. 水循環と水資源 (1) - 2. 水循環と水資源 (2) - 3. 水質汚濁と環境水理 (1) - 4. 水質汚濁と環境水理 (2) - 5. 水圏における流動の挙動と化学種移動 (1) - 6. 水圏における流動の挙動と化学種移動 (2) - 7. 水圏における流動の挙動と化学種移動 (3) - 8. 水圏における化学種の混合流出 (1) - 9. 水圏における化学種の混合流出 (2) - 10. 水圏における化学種の混合流出 (3) - 11. 水圏における粒子状物質の挙動 (1) - 12. 水圏における粒子状物質の挙動 (2) - 13. 水圏における粒子状物質の挙動 (3) - 14. 水圏の環境制御 (1) - 15. 水圏の環境制御 (2) - 1. Water circulation and resources (1) - 2. Water circulation and resources (2) - 3. Environmental pollution and its hydraulic (1) - 4. Environmental pollution and its hydraulic (2) - 5. Flow patterns affecting substance transportation (1) - 6. Flow patterns affecting substance transportation (2) - 7. Flow patterns affecting substance transportation (3) - 8. Mixing and run off (1) - 9. Mixing and run off (2) - 10. Mixing and run off (3) - 11. Behaviour of particles in water (1) - 12. Behaviour of particles in water (2) - 13. Behaviour of particles in water (3) - 14. Protection of aquatic environment (1) - 15. Protection of aquatic environment (2) ## ○水圏環境工学特論 (Advanced Aquatic Environment EngineeringAdvanced Aquatic Environment Engineering) #### 成績評価の方法 /Assessment Method レポート・小テスト 40% 期末試験 60% Report 40% Final Exam 60% #### 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 物理学、数学、化学工学の充分な知識を習得しておくこと Advanced knowledge of physics and mathematics are essential. #### 履修上の注意 /Remarks 使用言語(英語あるいは日本語、隔年実施。2012年は英語) Official languages for this subject are English and Japanese. English is used even year and Japanese is the odd. ### 担当者からのメッセージ /Message from the Instructor 化学と生物学は大学における工学基礎レベル、物理学、数学、化学工学は修士レベルの知識がそれぞれ必要である。 Chemistry and biology in the undergraduate level and physics, mathematics and chemical engineering in the graduate level (master) are to be studied. 2013 O ## ○地球環境戦略特論 (Advanced Environmental Modeling and Strategies for Sustainable Development) 担当者名 加藤 尊秋 / Takaaki KATO / 環境生命工学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description /Year of School Entrance 環境に関する将来予測では、経済モデルと環境に関する自然科学的モデルを連動させた環境経済統合モデルが使われている。この講義では、研究の第一線で用いられる環境経済統合モデルを理解するために必要な知識を、とくに経済モデルの部分に重点をおいて学ぶ。受講生の理解を促進するために、随時、レポート課題および小テストを課す。 到達目標は、経済モデルを読み解いてそこで表現されている内容を理解できるようになることであす。 Forecasting future climate and economy of the world relies upon computer simulation technologies using climate- economy joint models. The current subject explains how such model works using a simple example of climate-economy joint model such as the RICE/DICE model. After finishing this course, students would be able to read economic models and understand flows of material and money within those models. #### 教科書 /Textbooks W.D. Nordhaus "Managing The Global Commons", MIT Press. (室田泰弘、山下ゆかり、高瀬香絵(訳)地球温暖化問題の経済学、東洋経済新報社) ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) W.D. Nordhaus and J. Boyer "Warming the World", MIT Press. - 1 ガイダンス - 2 経済のモデル化(消費者の行動1:効用) - 3 経済のモデル化(消費者の行動2:効用最大化) - 4 経済のモデル化(企業の行動1:費用と利潤) - 5 経済のモデル化(企業の行動2:利潤最大化) - 6 経済のモデル化(技術選択) - 7 経済のモデル化(資本蓄積) - 8 DICEモデルの概要 - 9 DICEモデルの経済サブシステム(消費) - 10 DICEモデルの経済サブシステム(生産) - 11 DICEモデルの気候経済サブシステム - 12 DICEモデルの経済・気候連動 - 13 パラメータの推定とキャリブレーション - 14 環境経済統合モデル用のシミュレーション言語 - 15 まとめ - 1 Introduction - 2 Economic modeling: Consumer I: Utility - 3 Economic modeling: Consumer II: Utility maximization - 4 Economic modeling: Firm I: Cost and profit - 5 Economic modeling: Firm II: Profit maximization - 6 Economic modeling: Technology choice - 7 Economic modeling: Capital accumulation - 8 DICE model overviewl - 9 DICE model: Consumption - 10 DICE model: Production - 11 DICE model: Climate subsystem - 12 DICE model: Climate Economy linkage - 13 Model calibration - 14 Modeling language - 15 Conclusion # ○地球環境戦略特論
(Advanced Environmental Modeling and Strategies for Sustainable Development) ## 成績評価の方法 /Assessment Method レポート 80% 小テスト 20% Term paper 80% Mini exam 20% 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class ミクロ経済学の基礎知識を前提とする Knowledge of basic microeconomics is required. ## 履修上の注意 /Remarks 授業中に計算課題を行うことがあるので、関数電卓またはExcel等が利用可能なノートパソコンを持参のこと 英語と日本語で交互に隔年開講(2013年度は日本語) Please bring your lap top computer for use in exercises. Official language is Japanese in 2013. ## 担当者からのメッセージ /Message from the Instructor ## ○地圏環境修復特論 (Advanced Geosphere Environment Treatment) 伊藤 洋 / Yo ITO / エネルギー循環化学科(19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 謹義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2004 2012 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 過去の人為的な行為による土壌・地下水汚染、特に重金属や揮発性有機化合物による汚染と人間・社会影響との関わりから、地圏環境問題への 対応のあり方や具体的な対策手法,企業リスクマネージメントについてより高度に理解できるように学習する。さらに、土壌環境保全のための 高度な技法開発やシステム的施策を構築できる基礎力を養う。この講義の達成目標は、日本における土壌汚染の現状、リスクマネジメントおよ び浄化方法についてその概略を説明できるようになることである。 In this program, students will learn about the current state of artificially polluted soil in Japan and the techniques used for soil treatment. First, the background and the law associated with soil contamination will be introduced, and the theory of transport processes of soil contaminants will be explained. Thereafter, various techniques used for the treatment of soil polluted by heavy metals and VOCs will be presented to the students. Finally, risk management of the private enterprise that owns the soil pollution land will be discussed. The performance target of this lecture is to be able to explain about the outline of the current state, the risk management and the treatment method of the contaminated soil in Japan. #### 教科書 /Textbooks 特になし None 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 特になし None - 1 地圏環境の概要,土壌汚染の背景と市場 - 2 土壌汚染の原因・分類 - 3 土壌汚染物質の分類 - 4 土汚染対策法の概要 - 5 事例演習 - 6 汚染物質の輸送過程(1)(ポテンシャル、ダルシー則など) - 汚染物質の輸送過程(2)(地下水流れ、溶質移動など) - 8 汚染土壌の浄化(1)(浄化のアプローチ) - 9 汚染土壌の浄化(2)(重金属汚染) - 10 汚染土壌の浄化(3)(VOC汚染) - 11 汚染土壌の浄化(4)(油汚染) - 12 汚染土壌の浄化(5)(PCB汚染など) - 13 汚染土壌の浄化(6)(ケーススタディ) - 14 リスクマネジメント - 15 まとめ - 1 Introduction - 2 Background of soil contamination - 3 Classification of soil contaminants - 4 Survey of soil contamination counter measurements law - 5 Case study of soil contamination problem - 6 Transportation process of contaminants in soil, partl(Potential energy, Darcy's law etc.) - 7 Transportation process of contaminants in soil, partII(Groundwater flow, migration etc.) - 8 Treatment of pollution soil, part I(Approach to measure methods) - 9 Treatment of pollution soil, part II(Heavy metal) - 10 Treatment of pollution soil, part III(VOC) - 11 Treatment of pollution soil, part IV(Oil) - 12 Treatment of pollution soil, part V(PCB etc.) - 13 Treatment of pollution soil, part VI(Case study) - 14 Risk management (enterprise risk) - 15 Summary ## ○地圏環境修復特論 (Advanced Geosphere Environment Treatment) #### 成績評価の方法 /Assessment Method 小テスト 60% レポート・演習 40% Regular assignments 60% Mini quizzes 40% ## 事前・事後学習の内容 /Preparation and Review ## 授業に対する準備事項 /Preparation for the Class 特になし None ### 履修上の注意 /Remarks 使用言語(2013年度:英語・日本語、2014年度:日本語)、英語による受講希望者がなければ2013年度も日本語開講 Official language for this subject: English and Japanese in 2013. Guest lecturers would teach risk management sessions in Japanese., Japanese in 2014 ### 担当者からのメッセージ /Message from the Instructor 土壌汚染問題は,環境問題のみならず昨今の土地取引においては必須の要素となりつつある。これまでに土壌物理学・地下水理学に関する講義 を履修してこなかった学生に対しても理解できるように平易に解説を行う。社会で役立つ実学を学ぶ。 Soil pollution is not only an important environmental concern but also a hindrance in real estate transactions. The participating students will learn about soil pollution from the basics of the problem to its effects on actual business. 2013 O ## ○生産工程学特論 (Advanced Production Process Engineering) 担当者名 水野 貞男 / Sadao MIZUNO / 機械システム工学科 /Instructor 履修年次単位2単位学期2学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description /Year of School Entrance ものを生産する工程においては資源・エネルギーを高度に有効に使用することが求められている。本講義では、高度な高効率に生産する取り組 みについて学び、最近取り組まれている高度な技術について実施例を上げて討議する。新しく開発するべき技術・工法についての方向性を議論 できるようになることを到達目標とする。 It is required to use efficiently the resources and energy on production process of goods. On this study, we learn to high-degree and high-efficient production, and discuss to high-degree technology which is recently struggling, giving examples of implementation. Moreover, we grasp the trend of really new techniques and processing methods which have to develope. #### 教科書 /Textbooks プリント配布あるいは開講日に指定する。 Distribution of printed papers, or it is designate the started day of this lectures. #### 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 機械工学便覧生産システム工学β7 日本機械学会編 Handbook of mechanical engineerng, production systems enngineering β7, compiled by the Japan Society of Mechanical Engineers. - 1 高度生産工程の概要 - 2 高度工程設計 概要 - 3 高度工程設計 複合化技術 - 4 高度工程設計 小型化技術 - 5 高度工程設計 高速化・高能率化技術 - 6 複合工作機械 高度な構造の技術 - 7 複合工作機械 総合機能の技術 - 8 高度生産設計 3D設計の活用技術 - 9 高効率生産方式の概要 - 10 高効率生産方式 混流順序生産 - 11 高効率生産方式 混流順序生産指示と物流 - 12 高効率生産方式 多種混流生産 - 13 高効率生産方式 多種混流生産指示と物流 - 14 高度品質管理・高度予防保全 - 15 総復習 - 1 Overview of high-degree production processes - 2 High-degree process design, overview - 3 High-degree process design, compound technique - 4 High-degree process design, miniaturization tech. - 5 High-degree process design, high-speed,-efficiency tech. - 6 Compound machine, high-degree structure tech. - 7 Compound machine, comprehensive function tech. - 8 High-degree production design, three-D design tech. - 9 High-efficiency production system, overview - 10 High-efficiency production system, mix-flow order - 11 High-efficiency production system, method of indication - 12 High-efficiency production system, variety mix-flow - 13 High-efficiency production system, method of indication - 14 High-degree quality control and preventive maintenance - 15 Review ## ○生産工程学特論 (Advanced Production Process Engineering) #### 成績評価の方法 /Assessment Method 平常点 (学習態度) 20% レポートあるいは試験の評点 80% Normal mark (Study behavior) 20% Mark of report or tests 80% ## 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 各分野の基礎技術が必要であり、その技術を元に講義を行なう。講義に沿った技術応用展開の意見をレポートで述べ、技術力向上に役立てる。 使用言語、2013年度も日本語開講、英語受講希望者がいれば別途実施。 This study is need to fundamental technology of each fields, and according to these technology, this lecture is done. Students express own opinions for applied and developed technique along this lecture, and put to good use for improvement in technical ability. Official language for this subject is Japanese in 2013 too, but if there is some applicants in English, it is done separately in English. #### 履修上の注意 /Remarks 本講義内容は、常に各自の専門分野に当てはめると、どうなるかを考えて履修すること。 Students are need to consider whether always this lecture can be applied to each technical field. ## 担当者からのメッセージ /Message from the Instructor 製品設計、生産技術、生産と多岐にわたった複合分野の技術であり、最先端の技術を自らめざす。 These lectures are the technique of compound fields at the wide variety of product design, production engineering, manufacturing, and you should aim at the most advanced technology use by your own original invention. ### キーワード /Keywords 生産方式、同期生産、平準化生産、多品種生産 p roduction system, production synchronization, production levelig, production of many models ## ○リサイクル工学特論 (Advanced Recycling System Engineering) 大矢 仁史 / Hitoshi OYA / エネルギー循環化学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 謹義 クラス /Year /Credits /Semester /Class Format /Class 2004 対象入学年度 2012 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 循環型社会構築に必要なリサイクル技術分野での研究、開発の実例を紹介し、工学的な側面からの解説を行う。また、実用化されたリサイクル 技術を紹介し、研究開発、技術開発の方向性について考える。 循環型社会構築の理解を深めることを達成目とする。 Actual cases in research and development in recycing technologies (which is necessary for forming sustainable society) are introduted and explained from the engineering aspect. Also in introducing practically applied recycling technologies, directions of research and development (R&D) and technological development (TD) are discussed. The understanding of the recycling oriented society is the target. #### 教科書 /Textbooks 特に指定せず、必要に応じて講義の都度資料を配付する Not specified, distributed in lectures as needed ## 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に適宜指示する Instructed in lectures - リサイクルの概要 - 2 リサイクルの考え方 - 3 前処理としての粉砕技術1(破砕) - 前処理としての粉砕技術2(粉砕) - 5 物理的分離技術1(ソーティング) - 6 物理的分離技術2(比重) - 7 物理的分離技術3(磁気) - 8 物理的分離技術4(電気) - 9 精製技術1(鉄) - 10 精製技術2(アルミニウム) - 11 精製技術3(銅) - 12 リサイクル技術紹介1(自動車) - 13 リサイクル技術紹介2(家電) - 14 リサイクル技術紹介3(包装容器) - 15 まとめ - 1 Overview of recycling - 2 Idea of recycling - 3 size reduction as a pre-treatment 1(crushing) - 4 size reduction as a pre-treatment 2(grinding) - 5 Separation technology1(sorting) - 6 Separation technology2(gravity) - 7 Separation technology3(magnetic) - 8 Separation technology4(electric) - 9 Refinement technology1(iron) - 10 Refinement technology2(aluminum) - 11 Refinement technology3(copper) - 12 Introduction of recycling process1(automobile) - 13 Introduction of recycling process2(electric appliance) - 14 Introduction of recycling process3(package) - 15 Summary # ○リサイクル工学特論 (Advanced Recycling System Engineering) # 成績評価の方法 /Assessment Method 積極的な授業参加 100% Active learning 100% # 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class 特になし nothing # 履修上の注意 /Remarks リサイクル工学を履修し、基礎知識があることが望ましい。出席を重視する。レポートによって講義内容の理解度を評価する。 It is desirable that you took recyling-system engineering course and have basic knowledge. Attendence is empasized. Your understinding on lecture materials is evaluated by your report. ### 担当者からのメッセージ /Message
from the Instructor 循環型社会、リサイクルについて講義により知識を得るだけではなく、独自の意見を述べることで行う。 Not only acuiring knowledge about sustainable society and recycling through lectures, you are given opportunities to present your own ideas. # ○健康リスク学特論 (Advanced Studies in Environmental Pollution and Health Risks) 担当者名 加藤 尊秋 / Takaaki KATO / 環境生命工学科(19~), 原口 公子 / Kimiko HARAGUCHI / エネルギー循環化 /Instructor 学科 藤野 善久 / Yoshihisa FUJINO / 非常勤講師, 馬 昌珍 / Chang-Jin MA / 非常勤講師 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Year of School Entrance Image: Contract of the properties propert 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 水・資源循環問題と公衆衛生の係わりについて、環境対策に取り組む行政・企業関係者、又、環境技術の開発者としての活動に不可欠な知識得、 発展させる能力を得ることを目的とする。 Participants of this course will accquire practical knowledge as administrators or environmental technicians to tackle with health risks embedded in the environment. Lectures are selected from active experts of public health and environmental policy. The objectives of this lecture is to obtain basic knowledge for research and to develop and improve the research ability. ### 教科書 /Textbooks テキスト配布 Handouts are prepared by lectures. # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) Maude Barlow,"Blue Covenant: The Global Water Crisis and the Coming Battle for the Right to Water," The New Press,New York,USA. # ○健康リスク学特論 (Advanced Studies in Environmental Pollution and Health Risks) # 授業計画・内容 /Class schedules and Contents - 1 地球科学及び地球環境問題の概要 - 2 大気汚染物質の環境における化学反応 - 3 燃焼汚染物質の制御燃焼汚染物質の制御 - 4 フィックスソースにおける大気汚染物質 - 5 大気汚染物質の環境における拡散 - 6 モービルソースからの大気染物質 - 7 統計的手法による大気汚染解析及び評価 - 8 アジアのヒ素汚染 - 9 モンスーン地域の水系伝染病 - 10 社会環境と健康 - 11 水俣病概論 - 12 公害病と疫学 - 13 現地学習 (1) 水俣資料館 - 14 現地学習 (2) 水俣病語り部 - 15 現地学習 (3) 水俣湾の再生 - 1 Overview of earth science & pollution - 2 Chemical reaction of air pollutants - 3 Combustion control of pollutants - 4 Air pollutants at fixed source - 5 Diffusion of air pollutants - 6 Air pollutants from mobile source - 7 Analysis & estimation of air pollution by statistical method - 8 Health toxicity of arsenic in drinking water - 9 Health risk and water borne disease in Asia - 10 Social environment and health - 11 Overview of Minamata Diesease - 12 Health risk and Epidemiology - 13 Field study (1) Minamata Disease Municipal Museum - 14 Field study (2) Minamata Disease victims memorial service - 15 Field study (3) Resuscitation of Minamata Bay ### 成績評価の方法 /Assessment Method 積極的な授業参加 50% 宿題(レポート) 及び各自テーマを選定しレポート提出(A4-10枚以上) 50% Active learning 50% Assignment and Report about selected theme (A4-10 sheets or more) 50% # 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class 活発な討議を期待する Active participation to discussions is highly valued. ### 履修上の注意 /Remarks ### 担当者からのメッセージ /Message from the Instructor # ○流動制御システム特別講義 (Special Lectures on Flow Control Systems) 担当者名 宮里 義昭 / Yoshiaki MIYAZATO / 機械システム工学科(19~), 小野 大輔 / Daisuke ONO / 機械システム /Instructor 工学科 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ### 授業の概要 /Course Description The Interaction between a normal shock wave and a boundary layer along a wall surface in internal compressible flows causes a very complicated flow. When the shock is strong enough to separate the boundary layer, the shock is bifurcated and one or more shocks appear downstream of the bifurcated shock. A series of shocks thus formed, called shock train, is followed by an adverse pressure gradient region. Thus the effect of the interaction extends over a great distance. The flow is decelerated from supersonic to subsonic through the whole interaction region. In this sense, the interaction region including the shock train in it is referred to as pseudo-shock. The shock train and pseudo-shock strongly affect the performance and efficiency of various flow devices. Therefore, the objectives of this course are to understand the shock train and pseudo-shock caused by the interaction between shock wave and boundary layer in internal gas flows and the pseudo-shock in various devices and its control methods. #### 教科書 /Textbooks Original textbook to be delivered. # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) To be announced in class. ### 授業計画・内容 /Class schedules and Contents - 1 Introduction - 2 Definitions of shock trains and pseudo-shocks - 3 The state of the art - 4 Properties of pseudo-shocks - 5 Neumann and Lustwerk's experiment - 6 Numerical calculations on shock trains - 7 Shockless model of pseudo-shocks - 8 Diffusion model of pseudo-shocks - 9 Modified diffusion model of pseudo-shocks - 10 Mass-averaging flow model of pseudo-shocks - 11 Pseudo-shocks in supersonic wind tunnel diffusers - 12 Pseudo-shocks in supersonic inlet diffusers - 13 Pseudo-shocks in supersonic ejectors - 14 Control methods of pseudo-shocks - 15 Self-excited oscillations of pseudo-shocks ### 成績評価の方法 /Assessment Method Presentation 100% ### 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class It is desirable to do preparations for lessons and a review. #### 履修上の注意 /Remarks It is desirable for there to be technical knowledge about fluid mechanics. ### 担当者からのメッセージ /Message from the Instructor Students attending this lecture understand fundamental knowledge about intake aerodynamics ## キーワード /Keywords Compressible fluid dynamics, Shock waves, Supersonic nozzles, Supersonic diffusers, Mach numbers, Sonic waves # ○設計システム特別講義 (Special Lectures on Design Systems) 担当者名 松永 良一 / Ryoichi MATSUNAGA / 機械システム工学科, 趙 昌熙 / Changhee CHO / 機械システム工学科 /Instructor (19~) 村上 洋 / Hiroshi MURAKAMI / 機械システム工学科 (19~) 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 機械構造物の設計における、材料の変形、強度、破壊に関する材料力学等に関する知識を培い,環境適合性の高い各種工業製品に関する最新 の設計・加工技術について説明できるようになる。 This course is an advanced lecture about design and processing of a machine structure, including deformation, strength, and failure of materials. Topics are up-to-date design and processing technologies about various industrial materials, considering environmental compliance. #### 教科書 /Textbooks なし None # 参考書(図書館蔵書には 〇) /References(Available in the library: 〇) 文献のコピーを配布、および随時紹介する。 Handouts of a copy of articles about related topics. ### 授業計画・内容 /Class schedules and Contents 1機械構造物の安全性に関する最近の理論と技術【詳細未定】 2 " 3 " 4 機械構造物の疲労損傷の検出、評価方法に関する最近の話題。【詳細未定】 5 " 6 " 7 " 8 最適設計法に関する最近の理論と技術に関する主要文献の討論【詳細未定】 9 " 10 " 11 " 12 " 13 " 14 " 15 まとめ - 1 Latest technologies about safety of machine structure (Details depend on research theme) - 2 Continuation - 3 Continuation - 4 Detection and evaluation of fatigue failure of machine structure (Details depend on research theme) - 5 Continuation - 6 Continuation - 7 Continuation - 8 Discussion on papers about latest optimal design (Details depend on research theme) - 9 Continuation - 10 Continuation - 11 Continuation - 12 Continuation - 13 Continuation - 14 Continuation15 Summary # 成績評価の方法 /Assessment Method レポート 100% Report 100% ### 事前・事後学習の内容 /Preparation and Review # ○設計システム特別講義 (Special Lectures on Design Systems) 授業に対する準備事項 /Preparation for the Class なし None 履修上の注意 /Remarks 担当者からのメッセージ /Message from the Instructor # ○システム工学特別講義 (Special Lectures on Systems Engineering) 担当者名 清田 高徳 / Takanori KIYOTA / 機械システム工学科(19~), 佐々木 卓実 / Takumi SASAKI / 機械システム /Instructor 工学科(19~) 履修年次単位2単位学期2学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象入学年度 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ### 授業の概要 /Course Description システム工学はシステムの表現、解析、設計、制御、評価、最適化、信頼性、安全性などに関する学問である。本科目では、ロボットや自動車などの機械システムを対象として、主に文献の輪読を通して、システム工学に関する知識を深める。到達目標は、専門用語を使いこなすことができるようになることである。 System engineering is related to expression, analysis, design, control, estimaton, optimization, reliability, safety etc. of systems. This course deepens the knowledge on system engineering mainly through paper reading, for mechanical systems such as robots and automobils. The goal is to become able to handle teminologies. #### 教科書 /Textbooks 必要に応じて資料を配付 Papers will be distributed. # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) なし #### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス Introduction - 2 システムのモデリング Modeling of Systems - 3 システムのモデリング(事例) Modeling of Systems (Example) - 4 システムの解析 Analysis of Systems - 5 システムの解析(事例) Analysis of Systems (Example) - 6 システムの設計 Design of Systems - 7 システムの設計(事例) Design of Systems (Example) - 8 システムの最適化 Optimization of Systems - 9 システムの最適化(事例) Optimization of Systems (Example) - 10 システムの制御(理論) Control of Systems (Theory) - 11 システムの制御(応用) Control of Systems (Application) - 12 システムの制御(事例) Control of Systems (Example) - 13 システムの安全性 Safety of Systems - 14 システムの安全性(事例) Safety of Systems (Example) - 15 まとめ Conclusions ### 成績評価の方法 /Assessment Method 発表 60% Presentation 60% レポート 40% Reports 40% # 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 制御工学に関する基礎知識と研究経験を有すること. It is required to have basis and research experience for control engineering. #### 履修上の注意 /Remarks ### 担当者からのメッセージ /Message from the Instructor # ○ロボティクス特別講義 (Special Lectures on Robotics) 担当者名 清田 高徳 / Takanori KIYOTA / 機械システム工学科(19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ### 授業の概要 /Course Description
昨今の目覚しい機械技術・制御技術の発展により、今やロボットは産業界に留まらず一般家庭にも普及し始める勢いである。本講義では、このようなロボットを題材に、それらの機構、動力学、制御などの基盤重要技術を取り扱う。到達目標は、専門用語を使いこなすことができるようになることである。 Popularization of robotics now expands not only to industry, but also to general home, by remarkable development of mechanical and control technologies. The lecture gives fundamental important technologies of robotics, such as mechanics, dynamics, and control. The goal is to become able to handle teminologies. #### 教科書 /Textbooks 「ロボティクス」日本機械学会 Robotics, JSME # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 必要に応じて資料配付。 Papers will be distributed, if necessary. ### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス Introduction - 2 分解する Decomposition - 3 移動する Locomotion - 4 作業する Manipulation - 5 計測する Sensing - 6 駆動する Actuation 7 制御する Control - 8 行動を決定する Motion teaching/planning - 9 デザイン (設計) する Design - 10 産業用ロボット Industrial robot - 11 サービスロボット Service robot - 12 ロボットの安全 Safety of robot - 13 総合演習(1) Overall seminar (1) - 14 総合演習(2) Overall seminar (2) - 15 まとめ Summary #### 成績評価の方法 /Assessment Method 発表 50% レポート 50% presentation 50% report 50% 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 制御工学に関する基礎知識と研究経験を有すること. It is required to have basis and research experience for control engineering. ### 履修上の注意 /Remarks ### 担当者からのメッセージ /Message from the Instructor # ○ロボティクス特別講義 (Special Lectures on Robotics) # ○環境共生都市づくり講究 (Supervised Research on the Urban Environment and Ecological Design) 担当者名 福田 展淳 / Hiroatsu FUKUDA / 建築デザイン学科(19~), デワンカー バート / Bart DEWANCKER / 建築 /Instructor デザイン学科 (19~) 履修年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象入学年度 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 建築自体で環境に配慮するだけでなく、都市及び街区全体で環境に配慮することの意味を学ぶ。2名の教員が、2つのフェイズに分かれて講義を行う。第1フェイズでは、建築設計と結びついた環境共生都市に関わる事例研究を行い、どのような環境配慮が設計上で行われているかを理解する。第2フェイズでは、サステイナブルシティ(持続可能な都市づくり)及びコンパクトシティについて学習し、北九州市を対象地域にして、サステイナブルシティの基本計画の演習を行う。 事例研究では、どのように環境配慮型の都市が形成されているか、具体的手法やそのような都市が生み出される背景まで踏み込み、議論する Globally, there are two trends in urban development, shrinking cities and compact cities in developed countries on the one hand, and expanding cities in developing countries on the other hand. In the first series of sessions we will deal with research on actual sustainable urban cities, in the second series, we will search on compact and shrinking cities. We discuss more deeper aspects of sustainable urban cities, and understand the reasons to pursue the environmental conscious cities and back ground of those cities in many countries all over the world. #### 教科書 /Textbooks 指定しない Not specified # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 1)都市環境学 都市環境学教材編集委員会 Urban Environmentology 2)サステイナブル・コミュニティ:川村健一+小門裕幸著 Sustainable Comunity Kenichi Kawamura, Hiroyuki Okado 3)コンパクトシティ:海道清信著(バート担当) Compact City Kiyonobu Kaido # ○環境共生都市づくり講究 (Supervised Research on the Urban Environment and Ecological Design) ### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス - 2 環境共生都市づくり事例研究1 都心型再開発1 - 3 環境共生都市づくり事例研究2 都心型再開発2 - 4 環境共生都市づくり事例研究3 郊外型設計事例1 - 5 環境共生都市づくり事例研究4 郊外型設計事例2 - 6 環境共生都市づくり事例研究5 海外事例1 - 7 環境共生都市づくり事例研究6 海外事例2 - 8 環境共生都市づくり事例研究7 海外事例3 - 9 サステイナブルシティとコンパクトシティ(1) - 10 サステイナブルシティとコンパクトシティ(2) - 11 サステイナブルシティとコンパクトシティ(3) - 12 サステイナブルシティとコンパクトシティの演習(1) - 12 リスノイノノルンノーとコンハノトンノーの演目(1) - 13 サステイナブルシティとコンパクトシティの演習(2) 14 サステイナブルシティとコンパクトシティの演習(3) - 15 発表会(プレゼンテーション/口頭試問) - 1 Guidance - 2 Environmental City Case study 1: redevelopment of inner city 1 - 3 Environmental City Case study 2: redevelopment of inner city 2 - 4 Environmental City Case study 3: urban fringe studies 1 - 5 Environmental City Case study 4: urban fringe studies 2 - 6 Environmental City Case study 5: foreign cities 1 - 7 Environmental City Case study 6: foreign cities 2 - 8 Environmental City Case study 7: foreign cities 3 - 9 Sustainable city and Compact city 1 - 10 Sustainable city and Compact city 2 - 11 Sustainable city and Compact city 3 - 12 Sustainable city and Compact city, project study 1 - 13 Sustainable city and Compact city, project study 2 - 14 Sustainable city and Compact city, project study 3 - 15 Presentation # 成績評価の方法 /Assessment Method 授業への積極的参加、質疑 20% 事例研究に対する評価 20% 演習課題に対する評価 20% プレゼンーションの評価 40% positive collaboration and questioning on lecturesattendance and collaboration of lectures 20% evaluation of case study research 20% evaluation of project study research 20% evaluation of final presentation 40% ### 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 平素から本授業に関わる事例に関心を持ち、記録、収集等を行っておくことを推奨します。 Gathering information on sustainable cities is a must and will be helpful to understand better the lectures. # 履修上の注意 /Remarks 事例研究では、URL、出典を明記してください。 You have to specify sources such as URL or authority of your report. ## 担当者からのメッセージ /Message from the Instructor 事例研究、演習など学生が主体的に課題に取り組む参加型授業を行います。 We offer participatory class in which you have to take the initiative in assignments of case study and exercise lessons. 2013 O # 居住環境設計学講究 (Supervised Research on the Environmental Design of Living Spaces) 担当者名 黒木 荘一郎 / Soichiro KUROKI / 建築デザイン学科. 赤川 貴雄 / Takao AKAGAWA / 建築デザイン学科 /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ### 授業の概要 /Course Description /Year of School Entrance 空間表現で用いられる様々なデザイン語彙を、意匠としての効果と形成される居住環境との関係について適切に評価できる能力を涵養するため、空間デザイン上の諸要因を文献調査やフィールドサーヴェイ等で抽出、分析する。分析した結果に基づく内容をテーマとするプログラムを各担当教員の指導の下で取り組む。 到達目標は以下のとおりである。 - 1.赤川担当:都市空間の実際のプロジェクトを通して、建築・都市空間に対する理解を深める。 - 2 . 黒木担当:プロジェクトを想定して、居住環境に対する理解を深める。 In order to enhance the ability to analyze the relationship between design intentions and dwelling environment of design vocabulary in creating spaces, various aspect of space design will be abstracted and analyzed through document reading and field surveys. The analyzed result will be further explored under guidance of each instructors. Goal is as follows: - 1.Akagawa in charge: Deepening your knowledge and understanding for urban space through a real urban design project. - 2. Kuroki in charge: Deepening your knowledge and understanding for environmental design of living spaces through an environmental design project. #### 教科書 /Textbooks 使用しない Not specified ### 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 適宜紹介する To be announced in class ### 授業計画・内容 /Class schedules and Contents 1 ガイダンス/Guidance 2~7 赤川担当: 建築理論・都市理論の主要文献の読解、フィールドリサーチ等を通して、建築・都市空間に対する理解を深め、実際の都市空間におけるプロジェクトを想定した講義と演習を行う。 AKAGAWA in charge: This course assumes, reading of major thesis on Architectural and Urban design theory, field research, which will lead to actual urban design projects. 8~15 黒木担当: 現実の建築・都市空間を音・光・温熱空気環境および意匠の観点から分析し、その演出手法と効果について具体的に探ることを目的としたプロジェクトに関する講義と演習を指導する。 KUROKI in charge: This course will analyze a actual building and urban space from the viewpoint of acoustics, lighting, thermal environment and design, and instruct about a project aimed at investigating about the direction technique and an effect. ### 成績評価の方法 /Assessment Method レポート 100% Mid term Papers 100% # 事前・事後学習の内容 /Preparation and Review # 居住環境設計学講究 (Supervised Research on the Environmental Design of Living Spaces) # 授業に対する準備事項 /Preparation for the Class 特になし Not specified ### 履修上の注意 /Remarks プロジェクト演習などを通して担当教員と積極的なディスカッションを心がけること. Students are encouraged to participate in discussion with Instructor on Project Seminar. ### 担当者からのメッセージ /Message from the Instructor 高度かつ幅広い知識の吸収や理解に努めて欲しい. Students are encouraged to learn and understand on the higher order and extensive knowledge. # ○環境調和型材料工学講究 (Supervised Research on Environmentally Conscious Materials Engineering) 小山田 英弘 / Hidehiro KOYAMADA / 建築デザイン学科 (19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 クラス /Credits /Semester /Class Format /Class /Year 対象入学年度 2002 2012 2013 2003 2004 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department ### 授業の概要 /Course Description 持続可能な建築・都市の構築の基礎として、建築材料の環境調和性に配慮した研究および技術開発が重要である。本講義では、建築材料の強度 、施工性、耐久性、リサイクル性能、環境負荷およびコスト競争力の評価方法を学んだうえで、環境調和型の材料開発について具体的事例を通 して理解を深める。本講義の目標は、環境調和型材料工学の高度な知識、技術および研究方法を習得することである。 As the basis for the drawing up sustainable buildings and cities, the technical development considering eco-balance performance is important. In this lecture, attenders learn the methods to evaluate strength, workability, durability, recycling performance, environmental load and cost competitiveness of building materials. Thereafter they are expected to fully understand the technical development of environment-conscious materials. The object of this lecture is to make attenders master the advanced knowledge, skill and research method of environment-conscious material engineering. #### 教科書 /Textbooks なし Not specified # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に適宜示す To be announced in class #### 授業計画・内容 /Class schedules and Contents - 1. 建築材料の歴史的展開1【天然材料】 - 2. 建築材料の歴史的展開2【金属・無機材料】 - 3. 建築材料の歴史的展開3【複合材料】 - 4. 建築材料の歴史的展開4【先端材料】 - 5. 材料設計の系譜と環境調和型材料設計 - 6. 強度の評価 - 7 施工性の評価 - 8. 耐久性の評価1【構造材】 - 9. 耐久性の評価2【仕上材】 - 10. リサイクル性能の評価 - 11. 環境負荷の評価 - 12. コスト競争力の評価 - 13. 環境調和型材料設計1【環境調和型コンクリート】 - 14. 環境調和型材料設計2【維強化セメント系複合材料】 - 15. 環境調和型材料設計3【セメントコンクリート部材】 - 1. Historical aspects of building materials 1 / Natural materials - 2. Historical aspects of building materials 2 / Metallic and inorganic materials - 3. Historical aspects of building materials 3 / Composite materials - 4. Historical aspects of building materials 4 / Advanced materials - 5. History of material design and eco-material design - 6. Evaluation of strength - 7. Evaluation of workability - 8. Evaluation of durability 1 / Structural materials - 9. Evaluation of durability 2 /
Unstructural materials - 10. Evaluation of recycling performance - 11. Evaluation of environmental load - 12. Evaluation of cost competitiveness - 13. Eco-material design 1 / Environment-conscious concrete - 14. Eco-material design 2 / Fiber reinforced cement composites - 15. Eco-material design 3 / Cement concrete structure # ○環境調和型材料工学講究 (Supervised Research on Environmentally Conscious Materials Engineering) # 成績評価の方法 /Assessment Method 演習:50% レポート:50% Exercise: 50% Report: 50% ### 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class 講義中に適宜示す To be announced in class ### 履修上の注意 /Remarks 積極的な議論に努めること Attenders are expected to participate in discussion with instructor. ### 担当者からのメッセージ /Message from the Instructor 日本を情報発信源として世界的に普及したエコマテリアルの考えかたを良く理解し、今後の環境調和型建築を支える建築材料のあり方を考える 基礎として欲しい。 Attenders are expected to fully understand the way of thinking of eco-material which spread all over the world from Japan as the information-sending country, and to make it the base in the future of how building materials should be to support eco-building. # キーワード /Keywords 建築材料の歴史,耐久性,リサイクル性能,環境負荷,コスト競争力 Historical aspects, Durability, Recycling performance, Environmental load, Cost competitiveness O # 世代間建築講究 (Supervised Research on Trans-Generational Architectural Design) 担当者名 小山田 英弘 / Hidehiro KOYAMADA / 建築デザイン学科(19~) /Instructor 履修年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ### 授業の概要 /Course Description /Year of School Entrance 現在我々が見ることが出来る,歴史的建造物の生産技術(材料,構法,技術)について,建造時期ごとに調査し,現在課せられている建築物の 長寿命化の本質について学ぶ。調査,分析を通じ,工学の高度な知識,技術および研究方法を習得する。 Investigate about the manufacturing techniques (materials, construction methods) of the historical buildings which can be seen at present. And learn the essence for longer life at the buildings to build by present technology. The object of this lecture is to master the advanced knowledge, skill and research method of engineering. ### 教科書 /Textbooks 使用しない Not specified # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 適宜紹介する To be announced in class ### 授業計画・内容 /Class schedules and Contents 1 ガイダンス Guidance 2~5 江戸以前の建築物 Building built before the Edo period 6~9 明治から昭和初期の建築物 Building built from the Meiji period to the early part of the Shouwa period 10 ~ 14 昭和初期から現在の建築物 Building built after the early part of the Shouwa period 15 グループ討議 Discussion #### 成績評価の方法 /Assessment Method レポート 100% Mid term Papers 100% ### 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 特になし Not specified # 履修上の注意 /Remarks 積極的なディスカッションを心がけること Try an aggressive discussion. 専門科目 電境工学車攻 # 世代間建築講究 (Supervised Research on Trans-Generational Architectural Design) # 担当者からのメッセージ /Message from the Instructor 幅広い知識の吸収に努めて欲しい. Make effort to absorb extensive knowledge. # キーワード /Keywords 近代化遺産,産業遺稿,技術史,建築材料,建築施工 Heritage of Industrial Modernization, History of construction technology, Building material, Construction method 2013 O # ○都市環境工学講究 (Supervised Research on Urban Environmental Engineering) 担当者名 高 偉俊 / Weijun GAO / 建築デザイン学科(19~), 中上 英俊 / Hidetoshi NAKAGAMI / 非常勤講師 /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ### 授業の概要 /Course Description /Year of School Entrance 本授業では、都市の内部だけでなく我々の生活の場、生産活動の場全てを対象として、安全かつ快適な生活環境を将来世代にわたって創造していくための理論や技術について論じることを目的とする。持続可能な発展にむけて、都市が資源や地域環境、地球環境へ与えるインパクトをできるだけ小さくするような技術やシステムの提案を行う。また、環境・エネルギー等の問題は国境を超えて地球規模での緊急課題となっているため、国際協調との視点をおいて、今後の都市環境改善に関わる理論や技術を紹介する。 'Cities' are now home for over half the world's population - the hubs and gateways for capital, innovation, markets, resources and migration. On current trends the future may be a 'planet of slums' - many cities are places of poverty, crime and struggles for resources, where the 'environment' is polluted and hazardous. Other cities are sites of conspicuous consumption, where the 'environment' is a commodity seen from a car or hotel window. The lecture is an introduction to the many layers of the 'human urban environment'. It examines the full range of issues and elements that make-up the urban environment, including the consumption of resources, population pressures, and the pattern of urban development. These different issues and elements are examined through adopting an inter-disciplinary perspective, drawing equally on geography, sociology, economics and political science, as well as the environmental and resource sciences. ### 教科書 /Textbooks 環境と都市/Enviroment and Cities # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に適宜紹介する。/will be introduced during the lecture appropriately. # ○都市環境工学講究 (Supervised Research on Urban Environmental Engineering) ### 授業計画・内容 /Class schedules and Contents - 1. 概論 - 2. 人間都市環境 - 3. 未来都市一都市環境の変化 - 4. グロバール的な都市環境 - 5. エコシティをめざし一健康な都市環境 - 6. 都市の形と構造 - 7. グロバール市場の都市 経済都市環境 - 8. コミュニティとライフスタイルー社会都市環境 - 9. 都市環境の手法とツール - 10. 持続可能な都市と地区 - 11. 欧州都市の持続可能な発展 - 12. アメリカ都市の持続可能な発展 - 13. アジア都市の持続可能な発展 - 14. グリーン都市:都市の成長と環境 - 15. 環境都市の未来 - 1 Introduction - 2. The Human Urban Environment Scope and Methods - 3. Future Cities Urban Environments in Transition - 4. Urban Environments in a Global Context - 5. Towards the Eco-City the Physical Urban Environment - 6. City Form and Fabric the Urban Built Environment - 7. Cities in Global Markets the Economic Urban Environment - 8. Community and Lifestyle the Social Urban Environment - 9. What Next? Methods and Tools for the Urban Environment - 10. Towards Sustainable Cities and Regions - 11. Sustainable Development of European Cities - 12. Sustainable Development of America Cities - 13. Sustainable Development of Asia Cities - 14. Green Cities: Urban Growth And the Environment - 15. Future of Environment City #### 成績評価の方法 /Assessment Method レポート/Report 40% レポート4回/Fouth 課題/Theme 40% 課題2回/Twice 発表/Presentation 20% 発表1回/Once #### 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class レポートの課題を課し、次の授業で発表したり、議論したりするように授業を進めるので、事前の準備が必要である。 In each lecture, one subject will be presented. The studets will need to prepare the subject before the lecture in order to have a presentation in the class. ### 履修上の注意 /Remarks この授業は最新の英語教材を使って、翻訳したり、文献を調査したりするので、英語の能力も必要である。 English material will be used. Students need to translate or present in English. # 担当者からのメッセージ /Message from the Instructor 都市環境のあり方を総合システムとしてとらえ、都市環境と自然のより適切な新しい関係をつくりだしていって、21世紀の「都市環境形成」に 携わる総合リーダシップになってもらいたい。 The Lecture is to focus on the key debates that are of critical importance for the cities of both the developed and lessdeveloped nations and offers a set of directions and tools of enquiry that provide a realistic and practical approach to understanding and managing sustainable cities and regions # キーワード /Keywords 都市環境、エコシティ、都市構造、経済、社会 Urban Environment、Eco-City、City Form and Fabric、Economic Urban Environment、Social Urban Environment # 建築環境工学講究 (Supervised Research on Environmental Engineering in Architecture) 担当者名 龍 有二 / Yuji RYU / 建築デザイン学科(19~), 白石 靖幸 / Yasuyuki SHIRAISHI / 建築デザイン学科 /Instructor (19~) 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ### 授業の概要 /Course Description 建築的環境制御システムに関して、より深い知識の習得と研究能力を養う。特に、建築空間内外の熱および空気の物理的な現象の理解と、環境空間の合理的な形成維持メカニズムに関し、その専門知識を研究者レベルまで高めるため、①学生の研究テーマに対する熱・空気環境的側面からの課題抽出・検討・考察、②最新速報論文の研究内容の解剖などを行う。なお、熱環境分野を龍、空気環境分野を白石が担当する。 本授業の到達目標は、建築的環境制御システムに関して、課題抽出、解決のための思考・判断・表現ができることである。 The purpose of this course is to train researchers and deepen their expert knowledge about physics which specifies the various physical phenomena of architectural indoor and outdoor space, especially about heat and air as the pyisical elements. Ryu and Shiraishi will give lectures in thermal and air environment, respectively. #### 教科書 /Textbooks 特に指定しない。/No text is required for this course. # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 授業中に紹介する。 To be announced in class ### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス - 2 学生の研究内容発表 (熱・空気環境的視点で討議) - 3 各自の研究における熱・空気環境面の課題抽出 - 4 上記課題の検討・考察 - 5 課題解決のための作業 - 6 報告・討議 - 7 熱環境に関する最新速報論文選定(選定にあたっては学生の研究テーマに配慮) - 8 熱環境に関する最新速報論文精読(1) 日本語論文 - 9 熱環境に関する最新速報論文精読(2) 英語論文 - 10 上記論文の解剖(研究背景、新知見、独創性) - 11 空気環境に関する最新速報論文選定(選定にあたっては学生の研究テーマに配慮) - 12 空気環境に関する最新速報論文精読(1) 日本語論文 - 13 空気環境に関する最新速報論文精読(2) 英語論文 - 14 上記論文の解剖(研究背景、新知見、独創性) - 15 まとめ - 1 Guidance - 2 Presentation of each thesis and discussion - 3 Abstraction of thermal or air environmental problemsin each thesis - 4 Inquiry into the problems - 5 Work for the problem solving - 6 Discussion - 7 Selection of the newest paper about thermal environment - 8 Attentive reading of the newest paper (1) Japanese Paper - 9 Attentive reading of the newest paper (2) English Paper - 10 Analysis of the parer - 11 Selection of the newest paper about air environment - 12 Attentive reading of the newest paper (1) Japanese Paper - 13 Attentive reading of the newest paper (2) English Paper - 14 Analysis of the parer - 15 Review # 建築環境工学講究 (Supervised Research on Environmental Engineering in Architecture) 成績評価の方法 /Assessment Method レポート 40% 発表 60% Report 40% Presentation 60% 事前・事後学習の内容 /Preparation and Review 授業に対する準備事項 /Preparation for the Class 適宜指示する。 To be assigned in class. 履修上の注意 /Remarks 担当者からのメッセージ /Message from the Instructor O # 建築構造学講究 (Supervised Research on Structural Analysis) 担当者名 津田 惠吾 / Keigo TSUDA / 建築デザイン学科, 城戸 將江 / Masae KIDO / 建築デザイン学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ### 授業の概要 /Course Description /Year of
School Entrance 建築構造で用いる力学は,構造力学,弾性力学,塑性力学といくつかの種類がある.本講義では,これらの力学で共通となる,釣合式,ひずみ-変位関係,応力-ひずみ関係,境界条件などを,弾性力学の観点から解説する.さらに仕事の原理(発散定理,単位仮想荷重法,単位仮想変位法,仮想仕事の原理,補仮想仕事の原理)やエネルギ原理(最小ポテンシャルエネルギの原理,最小コンプリメンタリエネルギ原理)の解説を行なうことにより,力学の構造を理解してもらうことを目的とする. Principles of work and principles of energy are explained. A purpose of this lesson is to understand a structure of structural analysis. ### 教科書 /Textbooks エネルギ原理入門(鷲津久一郎著,培風館) A first course of energy priciple. # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 適宜紹介する To be announced in class. ### 授業計画・内容 /Class schedules and Contents - 1 梁理論における力学の構造 1 力の釣合 - 2 梁理論における力学の構造2 ひずみ 変位関係 - 3 梁理論における力学の構造3 応力 ひずみ関係 - 4 微小変位弾性問題の基礎方程式1 力の釣合 - 5 微小変位弾性問題の基礎方程式2 ひずみ 変位関係 - 6 微小変位弾性問題の基礎方程式3 応力一ひずみ関係 - 7 微小変位弾性問題の基礎方程式4 変位であらわした力の釣合 - 8 微小変位弾性問題の基礎方程式5 まとめ - 9 ダイバージェンスの定理 - 10 仮想仕事の原理 - 11 補仮想仕事の原理 - 12 最小ポテンシャルエネルギの原理 - 13 最小コンプリメンタリエネルギの原理 - 14 近似解法 - 15 まとめ - 1 Structure of structural mechanics in beam theory 1 Equilibrium - 2 Structure of structural mechanics in beam theory 2 Strain-displacement relation - 3 Structure of structural mechanics in beam theory 3 Stress-strain relaiton - 4 Governing equations of small displacement elastic problem 1 Equilibrium - 5 Governing equations of small displacement elastic problem 2 Strain-displacement relation - 6 Governing equations of small displacement elastic problem 3 Stress-strain relaiton - 7 Governing equations of small displacement elastic problem 4 Equilibrium by using the displacement - 8 Governing equations of small displacement elastic problem 5 Summary - 9 Divergence theorem - 10 Principle of virtual work - 11 Principle of complementally virtual work - 12 Principle of minimum potential energy - 13 Principle of minimum complementally energy - 14 Approximate analysis - 15 Review # 建築構造学講究 (Supervised Research on Structural Analysis) # 成績評価の方法 /Assessment Method 講義でのディスカッション 20% レポート 80% Discussion 20% Paper 80% # 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 構造解析学を受講済みが望ましい. Students are requested to complete the structural analysis. # 履修上の注意 /Remarks 積み重ねの講義であるので,毎回必ず出席することはもちろん,鉛筆を持って計算する復習が重要である. Calculation by own hand should be required for a proper understanding. # 担当者からのメッセージ /Message from the Instructor 本講義で構造解析の種々の方法を習得することにより,式の成り立ちやその醍醐味を味わってほしい. By taking this lesson, enjoy a world of structural analysis. O # 建築構工法講究 (Supervised Research on Building Systems and Construction Methods) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ### 授業の概要 /Course Description /Year of School Entrance 建築構法は建築に使われる材料及び構造によって大きく変わる。また,地域ごとに産出する建築材料が異なるため,地域性が強い。施工方法は 建築構法によって大きく異なり,両者は密接な関係を持つ。四半世紀ほど前から研究者の中には,「構工法」という言葉を使う人達が現われた 。このように構法と工法は建築を考える上で興味深い関係にある。本講究は,建築における構法と工法についての研究の糸口を探る研究者に向 けて,「構工法」の基礎および応用技術を習得することを目的とする。 The building systems depend upon materials and structures. And it is strongly localized because of difference of materials. Construction methods depend on building systems, and these have close relationship. Last quarter century, some researcher proposed to use the term "building systems and construction methods" as a new concept. As described above, the "building system" and "construction method" have an interesting relationship to research building related activities. The lecture is prepared for the researcher who wants to find clue of both relationship. ### 教科書 /Textbooks 特に無し Nothing particular # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 内田祥哉ほか:建築構法 第5版,市ヶ谷出版社 田村恭編著:第2版 建築施工法(工事計画と管理),丸善株式会社 ### 授業計画・内容 /Class schedules and Contents - 1.建築構法とは - 2. 建築構法の地域性 - 3. 建築材料と構法 - 4.建築物の構成:ビルディング・エレメント - 5. 躯体の構造方式 - 6. 建築物の仕上げ・設備 - 7. 建築構法の変遷 - 8. 建築における構法と工法 - 9. 鉄筋コンクリート構造の発展 - 10.PC工法の出現と発展 - 11. 複合化構法の出現と発展 - 12.構法・工法の発展とその要因 - 13.民間建設会社における構法・工法の開発事例 - 14. 構法・工法の今後の発展動向 - 15. 構工法研究事例の総括 - 1. Introduction of building systems - 2. Locality of building systems - 3. Building materials and building systems - 4. Building element - 5. Structural systems of building - 6. Finishing and building service systems - 7. History of building systems - 8. Building systems and construction methods - 9. History of reinforced concrete structure - 10. History of the pre cast concrete systems - 11. History of combined structures - 12. Development of building system and construction methods - 13. Examples of building system and construction method development in private companies - 14. Future of building system and construction method developments - 15. Review # 建築構工法講究 (Supervised Research on Building Systems and Construction Methods) ### 成績評価の方法 /Assessment Method 小論文 50% 構法と工法について,いかにユニークな見方をしたかで評価する。 プレゼンテーション 50% 発想したものをいかに旨く人に伝えられるか。 Mid term paper 50% Originality is the most crucial. Presentation ability 50% How to convey his/her idea is the most crucial. ### 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 毎回出す課題について,自分の考えをまとめておき,次回の討論が成り立つように準備しておく。 Students must create his/her own idea and prepare materials for discussion in next week lecture. ### 履修上の注意 /Remarks 建築のしくみと(構法)これを実現するための生産のしくみ(工法)に興味のある学生の履修を望みます。 The students who are interested in Building systems and construction systems are welcome. ### 担当者からのメッセージ /Message from the Instructor 建築をめぐる構法と工法は切っても切れない関係にあり,構法は建築を構成するモノであり,最終的な形が残る。一方,工法は建物が完成した 後は形として残らない。しかし,構法を実現するモノは施工技術,施工管理技術に裏付けられた工法である。両者の興味深い関係について一緒 に考えてみませんか? In building the building systems and construction method have a strong relationship. Building systems remained as an article and construction methods are not remained after completion of the project. However, building systems are realized with construction technologies that are based on construction methods and construction management. Let us think about interesting relationship of the building systems and construction methods with us! # 環境設備システム講究 (Supervised Research on Building Facilities Systems) 龍 有二 / Yuji RYU / 建築デザイン学科(19~), 葛 隆生 / Takao KATSURA / 建築デザイン学科 /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 謹義 クラス /Year /Credits /Semester /Class Format /Class 2004 2012 2013 対象入学年度 2002 2003 2005 2006 2007 2008 2009 2010 2011 O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description /Year of School Entrance 環境設備システム論を履修した学生が、建築環境・設備に関する国内外の文献を主に学術的な観点から調査し、その内容が将来の自らの研究あ るいは活動分野に応用できるように掘り下げた議論と考察を行う。 本授業の到達目標は、環境設備システムに関して、課題抽出、解決のための思考・判断・表現ができることである。 In this course, literatures related to building environment and building facilities are investigated from the scientific viewpoint. The subject matters are discussed in order to apply for own research subjects. ### 教科書 /Textbooks 特に指定しない。/No text is required for this course. # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 授業中に紹介する。 To be announced in class. #### 授業計画・内容 /Class schedules and Contents - 1 ガイダンスと対象分野の候補の絞り込み - 2 文献内容の調査と発表1(論文1:建築設備・日本語論文) - 3 文献内容の長所と課題の発見1(論文1) - 4 文献内容からの新たな研究・開発の視点の発見1(論文1) - 5 文献内容の調査と発表2(論文2:建築設備・英語論文) - 6 文献内容の長所と課題の発見2(論文2) - 7 文献内容からの新たな研究・開発の視点の発見2(論文2) - 8 文献内容の調査と発表3(論文3:空調システム・日本語論文) - 9 文献内容の長所と課題の発見3(論文3) - 10 文献内容からの新たな研究・開発の視点の発見3(論文3) - 11 文献内容の調査と発表4(論文4:空調システム・英語論文) - 12 文献内容の長所と課題の発見4(論文4) - 13 文献内容からの新たな研究・開発の視点の発見4(論文4) - 14 総合討論 - 15 まとめ - 1 Guidance and list up the literatures - 2 Study and introduction the literatures-1 (Building Facilities System in Japanese) - 3 Quest the literatures' advantage and issue-1 - 4 Quest the new research object from the literatures-1 - 5 Study and introduction the literatures-2 (Building Facilities System in English) - 6 Quest the literatures' advantage and issue-2 - 7 Quest the new research object from the literatures-2 - 8 Study and introduction the literatures-3 (Air-conditioning System in Japanese) - 9 Quest the literatures' advantage and issue-3 - 10 Quest the new research object from the literatures-3 - 11 Study and introduction the literatures-4 (Air-conditioning System in English) - 12 Quest the literatures' advantage and issue-4 - 13 Quest the new research object from the literatures-4 - 14 Discussion and summary - 15 Review ### 成績評価の方法 /Assessment Method 平常点(演習)/ Practice, etc 80% 提出レポート/Report 20% # 環境設備システム講究 (Supervised Research on Building Facilities Systems) 事前・事後学習の内容 /Preparation and Review 授業に対する準備事項 /Preparation for the Class 文献の調査と精読 Research and reading literatures 履修上の注意 /Remarks 必要に応じて指示する The instructor will indicate the prerequisites depending on the situation. 担当者からのメッセージ /Message from the Instructor # 建築材料講究 (Supervised Research on Building Materials) 担当者名 高巣 幸二 / Koji TAKASU / 建築デザイン学科 (19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | |------|------|------|------|------|------|------|------|------|------|------|------| | | | | | | | | | | | | 0 | 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース # 授業の概要 /Course Description 本講義では,建築材料のコンクリートの特徴に関してより深く探求し,フレッシュコンクリートの粘弾性的性質,硬化コンクリートの強度特性・耐久特性,これまでの技術の発展,各種規格・規準の発展と現状,品質管理・品質保証の理論と規定に関して講義と討論を行う.さらに最新の技術の開発と展開等の研究動向に関して講述する. 到達目標は以下の通りとする. ・建築材料を開発するため,建築材料の未解明な部分を的確に把握しそれを解明するための実験を計画できるようになる. This course searches more deeply for the concrete feature of the building material, lectures and discusses viscoelasticity property of fresh concrete, strength and durability property of hardening concrete, development of concrete technology, and quality control etc. In addition, it explains the latest research trend. Objective It comes to be able to plan the experiment to clarify the point of unclarification for building materials to develop building materials. #### 教科書 /Textbooks ガイダンス時に指示する. To be announced in guidance ###
参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義の中で適宜紹介する. To be announced in class # 建築材料講究 (Supervised Research on Building Materials) ### 授業計画・内容 /Class schedules and Contents - 1 総論 - 2 フレッシュコンクリート(粘弾性的性質) - 3 フレッシュコンクリート(レオロジー定数) - 4 硬化コンクリート(力学的性質) - 5 硬化コンクリート(収縮性状) - 6 硬化コンクリートの耐久性(劣化要因) - 7 硬化コンクリートの耐久性(中性化,アル骨,塩害) - 8 課題中間報告 - 9 高強度コンクリート(物理的性状) - 10 高流動コンクリート(力学性状) - 11 フライアッシュ混入コンクリート - 12 再生骨材コンクリート - 13 コンクリート関連の規格・基準 - 14 コンクリート関連の品質管理・品質保証 - 15 課題発表 - 1 Introduction - 2 Fresh concrete (viscoelasticity property) - 3 Fresh concrete (rheology constant) - 4 Hardening concrete (mechanical property) - 5 Hardening concrete (shrinkage property) - 6 Durability of hardening concrete (deteriorating factor) - 7 Durability of hardening concrete(carbonation, ASR, salt injury) - 8 Interim presentation - 9 High fluidity concrete part1 (physical property) - 10 High fluidity concrete part2 (mechanical property) - 11 Concrete using fly ash - 12 Concrete using recycle aggregate - 13 Standard specification of concrete - 14 Quality control of concrete - 15 Presentation # 成績評価の方法 /Assessment Method 平常点 30% 課題発表 70% Attendance and Participation 30% Presentation of assignments 70% ## 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 毎回の講義対象を事前に調査しておくこと. Students are required to investigate material targeted by lecture #### 履修上の注意 /Remarks コンクリート工学の知識を十分有していること Students are required to possess the knowledge of the concrete technology enough. ### 担当者からのメッセージ /Message from the Instructor 建築材料学の誕生から今日までコンクリートは,多くの建築材料研究者の研究対象となっています.将来研究者を目指すみなさんはここでしっかりコンクリート研究の基礎を養って下さい. Concrete is a lot of architectural material researchers' research objects. I believe this course will help students who will aim at the researcher of building materials in the future learn the base of a concrete research. - ・コンクリート Concrete - ・レオロジー Rheology # ○音声ディジタル信号処理特論 (Advanced Digital Signal Processing for Audio Signals) 西 隆司 / Takashi NISHI / 情報メディア工学科 /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 謹義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2004 2012 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 到達目標は以下の通りです。 音声信号を対象にしたデジタル信号処理手法のトピックである、インパルス応答推定、モデル化、適応信号処理など広く実用されているものに ついて、理論、応用の両面から幅広く学びます。処理手法を実際の問題に対して適用する可能性について理解を深めます。 - (1)音声信号処理の基本概念である、たたみこみ、インパルス応答とその推定・モデル化について説明できる。 - (2)マルチレート信号処理、線形予測符号、ケプストラム解析、ヒルベルト変換など、音声信号処理の応用技術について説明できる。 - (3)ウェーブレット変換について、その原理、応用が説明できる。 We study the algorithms for sound signal processing based on both theories and applications. Understanding of the signal processing will be improved through the programming exercises conducted in the latter half of the lecture. The targets of the lecture are as follows: - (1)Convolution, prediction and modelling of impulse responses, which are the fundamental concept of audio signal processing, can be explained. - (2)Application technologies such as multi-rate signal processing, linear predictive coding, cepstrum analysis and hilbert transform can be - (3) The principles and applications of wavelet transform can be explained. ### 教科書 /Textbooks #### 講義資料 Refer to the lecture materials ### 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) Discrete Time Signal Processing (A.V.Oppenheim 他著、Prentice Hall) 高速フーリエ変換とその応用(佐川雅彦他著、昭晃堂) ### 授業計画・内容 /Class schedules and Contents - 1. デジタル信号処理の基礎 / Fundamentals of Digital Signal Processing - 2. たたみこみ / Convolution by Overlap Save & Overlap Add Method - 3.インパルス応答推定1【LMS法】/ Prediction Impulse Responses by Least Mean Square Method - 4. インパルス応答推定2【相関法】/ Prediction Impulse Responses by Correlation Method - 5.インパルス応答モデル化1【最小位相,全域通過位相】 / Modelling of Impulse Responses by Minimum Phase / Allpass Phase 6. インパルス応答モデル化2【同型デコンボリューション】 / Modelling of impulse Responses by Homomorphic Deconvolution 7.マルチレート信号処理1【ダウンサンプリング,アップサンプリング】 / Multirate Signal Processing by Down-Sampling / Up-Sampling 8.マルチレート信号処理2【ポリフェーズフィルタ】 / Multirate Signal Processing by Polyphase Filter - 9. 線形予測符号/ Linear Predictive Coding - 10.ケプストラム解析 / Cepstrum Analysis - 11. ヒルベルト変換 / Hilbert Transform - 12. 短時間フーリエ変換/ Short Time Fourier Transform - 13.離散ウェーブレット変換1【ツースケール関係,多重解像度解析】 / Discrete Wavelet Transform 1 【Two-Scale Relation, Multiresolution Analysis】 14.離散ウェーブレット変換2【ドベシーのウェーブレット】 / Discrete Wavelet Transform 2 【 Daubechies Wavelet】 15. 演習 / Exercises # 成績評価の方法 /Assessment Method 課題レポート 100% Assignments 100% ### 事前・事後学習の内容 /Preparation and Review # ○音声ディジタル信号処理特論 (Advanced Digital Signal Processing for Audio Signals) ### 授業に対する準備事項 /Preparation for the Class 講義資料を予習しておくことが望ましい。 Study the lecture materials in advance. ### 履修上の注意 /Remarks 講義したアルゴリズムのプログラミング課題を課す。 Make MATLAB programs based upon the algorithms just learned in the lecture. # 担当者からのメッセージ /Message from the Instructor ディジタル信号処理技術の音声応用を幅広く学習することにより,この技術を各自の研究分野に活かすことを目標にしてほしい。 Understand digital audio technology through programming, signal processing and listening its results. # ○適応信号処理特論 (Advanced Adaptive Signal Processing) 孫 連明 / Lianming SUN / 情報システム工学科 (19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 謹義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2004 2012 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department ### 授業の概要 /Course Description 信号の特性と環境の変化に応じて信号処理システムを実時間的に調整する手法は重要な信号処理技術である。本講義では、基本的な適応信号処 理アルゴリズムとその応用について考察する。アルゴリズムの原理、収束特性解析、アルゴリズムの実装に重点をおいて学習する。さらに、適 応フィルタ、適応干渉キャンセラ、適応等化器の設計への応用を紹介し、適応信号処理の理論的原理と実用テクニックの理解を深めることを到 達目標とする。 Adaptive signal processing takes an important role in real time signal processing when the characteristics of signal and environment change with time. Several typical adaptive signal processing algorithms are investigated in this course, and their fundamental points, convergence properties and numerical implementations are studied in detail. Furthermore, both the theory and application techniques are experienced through the numerical examples such as the design of adaptive filter, interference canceller, equalizer. #### 教科書 /Textbooks 講義資料配布 / Distributed electronic materials # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) Adaptive Filter Theory, S. Haykin, Prentice Hall #### 授業計画・内容 /Class schedules and Contents - 1 適応システム構成、特徴 - 2 適応信号処理の数学基礎(1)確率論と線形代数 - 3 適応信号処理の数学基礎(2) フーリエ解析と線形システム - 適応信号処理のための最適アルゴリズム - 最急降下法の原理、アルゴリズムと収束特性 - LMSアルゴリズムの導入とアルゴリズムの実現 6 - 数値シミュレーション 7 - 8 LMSアルゴリズムの拡張 - 9 LSアルゴリズムの原理と特徴、RLSアルゴリズムの導入 - 10 RLSアルゴリズムの応用例 - 11 Kalmanフィルタの導入、定式化 - 12 Kalmanフィルタの公式、応用例 - 13 適応アルゴリズムの比較 - 14 数値シミュレーション - 15 適応信号処理の新展開 - Structure and property of adaptive system - Mathematical fundamentals (1) Stochastic process, linear algebra - Mathematical fundamentals (2) Fourier analysis, linear system - Optimization algorithms for adaptive signal processing - 5 Principles of steepest descent algorithm and its convergence - 6 LMS algorithm and its implementation - 7 Simulation examples - 8 Extension of LMS algorithm - 9 LS and RLS algorithms - 10 Application examples of RLS algorithm - 11 Introduction to Kalman filter - 12 Formulation and application of Kalman filter - 13 Comparison of adaptive algorithms - 14 Numerical simulation - 15 Topics in adaptive signal processing # ○適応信号処理特論 (Advanced Adaptive Signal Processing) # 成績評価の方法 /Assessment Method 演習 50% レポート 50% Exercises 50% Reports 50% # 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class 信号理論、線形システム、数値解析に関する知識が理解していることが望ましい。 It is desired to have mastered Signal, Linear System and Numerical Analysis. ### 履修上の注意 /Remarks 毎回の演習を通して適応信号処理の基本アルゴリズムと計算技法を理解する。 Understand the fundamental algorithms and computational techniques through numerical exercises. ### 担当者からのメッセージ /Message from the Instructor 適応信号処理は、信号処理、通信などの分野において不可欠な技術である。講義と数値演習を通して適応信号処理の基本理論と実用技法を理解 し、実際のシステムへの活用を期待する。 Adaptive signal processing is essential in signal processing and communication systems. It is expected to master both the fundamental theory and implementation techniques through the lectures and exercises, and make use them into practical applications. ### キーワード /Keywords 適応システム、適応アルゴリズム、最急降下法、LMSアルゴリズム、RLSアルゴリズム、Kalmanフィルタ Adaptive system, adaptive algorithm, steepest descent algorithm, LMS algorithm, RLS algorithm, Kalman filter # ○視覚情報処理特論 (Advanced Visual Information Processing) 担当者名 佐藤 雅之 / Masayuki SATO / 情報システム工学科(19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース ### 授業の概要 /Course Description 人間の視覚系に関する最新の研究をゼミ形式で学ぶ. Every student should introduce a resent journal paper on human visual system in turn. Most time will be used for discussion following the presentation. All students are expected to join in the discussion actively. 到達目標は以下のとおりである. ・視覚系に関する最新の研究論文を理解し,討論することができる. ### 教科書 /Textbooks 特になし Nothing particular # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 特になし Nothing particular ### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス - 2 論文紹介 (1) - 3 論文紹介 (2) - 4 論文紹介 (3) - 5 論文紹介 (4) - 6 論文紹介(5) - 7 論文紹介 (6) - 8 論文紹介 (7) - 9 論文紹介 (8) - 10 論文紹介 (9) - 11 論文紹介 (10) - 12 論文紹介 (11) - 13 論文紹介 (12) - 14 論文紹介 (13) - 15 論文紹介 (14) - ※ 詳細は授業で説明します. - 1 Guidance - 2 Introduction and discussion about a recent journal article (1) - 3 Introduction and discussion about a recent journal article (2) - 4 Introduction and discussion about a recent journal article (3) - 5 Introduction and discussion about a recent journal article (4) - 6 Introduction and discussion about a recent journal article (5) - 7 Introduction and discussion about a recent journal article (6) - 8 Introduction and
discussion about a recent journal article (7) - 9 Introduction and discussion about a recent journal article (8) - 10 Introduction and discussion about a recent journal article (9) - 11 Introduction and discussion about a recent journal article (10) - 12 Introduction and discussion about a recent journal article (11) - 13 Introduction and discussion about a recent journal article (12) - 14 Introduction and discussion about a recent journal article (13) - 15 Introduction and discussion about a recent journal article (14) # 成績評価の方法 /Assessment Method 討論への参加の度合いを評価 Participation in the discussion # ○視覚情報処理特論 (Advanced Visual Information Processing) 事前・事後学習の内容 /Preparation and Review 授業に対する準備事項 /Preparation for the Class 論文に事前に目を通してください . Please read the paper in advance. 履修上の注意 /Remarks 担当者からのメッセージ /Message from the Instructor 2012 2013 O # ○パターン認識応用特論 (Advanced Applied Pattern Recognition) 山崎 恭 / Yasushi YAMAZAKI / 情報システム工学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2004 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department # 授業の概要 /Course Description パターン認識技術の工学問題への応用に重点を置き,パターン認識技術を利用した様々なアプリケーションについての理解を深めることを目標 とする.講義の前半は,パターン認識問題に対する基本的なアプローチと最新の研究動向について整理し,後半は,パターン認識技術を利用し たアプリケーションの例として,音声認識技術,画像認識技術をはじめ,情報セキュリティの分野で実用化が進んでいるバイオメトリック認証 技術について精査し,パターン認識をとりまく技術の現状と今後の課題について理解する.本講義の到達目標は以下のとおりである. - ・統計的パターン認識の理論体系について理解し,技術の現状と課題について説明することができる. - ・工学上の問題解決にパターン認識技術を活用することができる. This course introduces students to the various pattern-recognition-based applications. In the first part, we provide some fundamental approaches to pattern recognition issues. In the second part, we introduce how to design speech and image recognition systems as the typical examples of pattern recognition applications. Also, we introduce a biometric recognition technology which is being utilized in the field of information security along with recent trends and issues in the pattern recognition field. The course goals are as follows: - · Understanding the system of pattern recognition theory and enabling to explain its current state and issues - · Enabling to utilize the pattern recognition technologies for solving engineering issues ### 教科書 /Textbooks 特になし. No textbook ### 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 講義中に適宜紹介する To be announced in class # ○パターン認識応用特論 (Advanced Applied Pattern Recognition) #### 授業計画・内容 /Class schedules and Contents - 1 序論 - 2 線形識別関数|【概論,最近傍決定則,線形分離可能性】 - 3 線形識別関数Ⅱ【線形識別関数の学習】 - 4 ニューラルネットワークI【概論,単純パーセプトロン】 - 5 ニューラルネットワークII【誤差逆伝播法】 - 6 ベイズ決定理論【概論,正規密度に対する識別関数】 - 7 最尤推定とベイズ推定 - 8 音声認識技術|【概論,音声分析法】 - 9 音声認識技術Ⅱ【隠れマルコフモデル,連続音声認識】 - 10 画像認識技術I【概論,文字認識】 - 11 画像認識技術II【各種アルゴリズム】 - 12 バイオメトリック認証I【概論】 - 13 バイオメトリック認証II【指紋認証,顔認証,話者認識等】 - 14 課題発表 - 15 まとめ - 1 Introduction - 2 Linear discriminant function I [Introduction, Nearest-neighbor rule, Linearly separability] - 3 Linear discriminant function II 【Learning algorithms】 - 4 Neural networks I [Introduction, Simple perceptron] - 5 Neural networks II 【Back propagation】 - 6 Bayesian decision theory [Introduction, Discriminant functions for the normal density] - 7 Maximum-likelihood estimation and Bayesian estimation - 8 Speech recognition I [Introduction, Speech analysis] - 9 Speech recognition II 【HMM, Continuous speech recognition】 - 10 Image recognition I [Introduction, Character recognition] - 11 Image recognition II 【Algorithms】 - 12 Biometric recognition I [Introduction] - 13 Biometric recognition II 【Algorithms and applications】 - 14 Presentation - 15 Summary ### 成績評価の方法 /Assessment Method 積極的な授業参加:20% 課題発表:40% 課題発表:40% レポート:40% Participation: 20% Presentation: 40% Final paper: 40% #### 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 解析学,線形代数学,確率論に関する基礎知識を復習しておくこと. Basic knowledge on analysis, linear algebra, and probability theory is required. #### 履修上の注意 /Remarks パターン認識に関する基礎知識を有すること,また,計算機を用いたシミュレーション実験(プログラミング)ができることを前提とする. Fundamental knowledge on pattern recognition and programming skills for computer simulation are required. #### 担当者からのメッセージ /Message from the Instructor 講義の前半では,パターン認識の理論に関する基本的事項の確認を行うとともに最新の研究動向について紹介します.講義の後半では,パターン認識技術の実用化動向について,具体例を挙げながら解説します.また,講義内容と関連した計算機シミュレーションの課題を各自で設定し ,発表・討論を行います. In the first part, we introduce the latest research trends along with reviewing the fundamental theory of pattern recognition. In the second part, we introduce some pattern-recognition-based applications in detail. In this course, each student is required to set a computer simulation assignment, which will be followed by presentation and discussion. ### キーワード /Keywords 識別関数,ニューラルネットワーク,ベイズ決定理論,音声認識,画像認識,バイオメトリック認証 discriminant function, neural networks, Bayesian decision theory, speech recognition, image recognition, biometric recognition # ○情報セキュリティ特論 (Advanced Information Security) 担当者名 佐藤 敬 / Takashi SATOH / 情報システム工学科 (19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | |------|------|------|------|------|------|------|------|------|------|------|------| | | | | | | | | | | | | 0 | 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建/Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 本授業では,安全な通信システムの設計に関連する暗号アルゴリズムとプロトコルに重点を置き,情報セキュリティ技術に関する理論面を中心に講義する.まず,授業の前半では,情報セキュリティの基礎について復習を行いながら,暗号,鍵管理,署名などの要素技術について理解を深める.そして,後半では,代表的な研究トピックや最近の暗号プロトコルについて解説する.情報通信システムの開発に携わる技術者に必要な情報セキュリティに関する知識を習得させることを主眼とする.各自が興味をもつ研究プロジェクトを通じて,情報セキュリティの技術者として必要な知識と研究能力を習得させることを主眼とする. This course focuses cryptographic algorithms and protocols related to design secure communication systems. This course consists of two parts: The first part covers the basic theory of cryptography and cryptographic primitives, especially, encryption schemes, key establishment and signature schemes. In the second part, we provide selected research-oriented topics and up-to-date cryptographic protocols. Students should be developed the knowledge and research skills needed for a professional in information security conducting a major research project related to their own interests. #### 教科書 /Textbooks なし No textbook # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) D. R. Stinson, CRYPTOGRAPHY Theory and Practice (3rd Edition), Chapman & Hall /CRC, 2006. #### 授業計画・内容 /Class schedules and Contents - 1 Introduction - 2 Classical Cryptography - 3 Shannon's Theory - 4 Conventional Encryption - 5 Hash Functions - 6 RSA Cryptosystem and Factoring Integers - 7 Public-key Cryptography and Discrete Logarithms - 8 Digital Signatures - 9 Pseudo-random Number Generation - 10 Identification Schemes - 11 Key Distribution - 12 Key Agreement - 13 Public-key Infrastructure - 14 Secret Sharing Schemes - 15 Multicast Security and Copyright Protection #### 成績評価の方法 /Assessment Method 研究プロジェクト 100% Research Project 100% #### 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 事前に配布資料に目を通して予習を行うこと. Students are required to read assigned articles prior to the class. #### 履修上の注意 /Remarks 大学院博士前期課程開講科目「情報セキュリティ論」を受講していることを前提として授業を行う。 Students are expected to have taken a course in cryptography, equivalent to Cryptographic Algorithms and Protocols in the master course program. # ○情報セキュリティ特論 (Advanced Information Security) # 担当者からのメッセージ /Message from the Instructor 本授業では,講義内容に基づいて情報セキュリティ分野に関する研究プロジェクトを課す。プロジェクトテーマの選定からまとめまで自主的に 行うことが求められる。 Students are expected to search for, read, and analyze relevant articles on information security and to write research reports. 2013 O # ○画像処理特論 /Year of School Entrance (Advanced Image Processing) 担当者名 奥田 正浩 / Masahiro OKUDA / 情報システム工学科(19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース # 授業の概要 /Course Description マルチメディア技術において重要なテーマである、「ネットワークストリーミング」を陽に考慮した圧縮符号化技術に関する事項を理論面、応 用面から包括的に学ぶ。マルチメディアデータ構造、色空間変換手法、フィルタリングによる信号の無相関化などを理論、実践の両面から学修 する。 到達目標は以下のお通りである。 - ・画像処理技術の復習 - ・数理的アプローチを用いた画像処理の理解 - ・アルゴリズム実装能力の習得 This course introduces source coding technologies concerning "network streaming" through theoretical and practical approaches, including multimedia data structure, color space transformations, filtering, signal decorrelation. #### 教科書 /Textbooks 特になし n/a # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) だれでもわかるMATLAB―即戦力ツールブック 培風館 ディジタル画像処理 CG-ARTS協会 C言語で学ぶ実践画像処理 オーム社 #### 授業計画・内容 /Class schedules and Contents - 1 概論 - 2 線形代数の基礎 - 3 確率の基礎 - 4 信号処理の基礎 (DFT、サンプリング、AD・DA変換) - 5 ディジタルフィルタの復習 - 6 画像処理の基礎 (フィルタ) - 7 フィルタの行列表現 - 8 画像復元の基礎 - 9 プログラミング演習 - 10 ADMM - 11 プログラミング演習 - 12 Primal Dual Splitting - 13 プログラミング演習 - 14 総合演習 - 15 まとめ - 1 Introduction - 2 First course in linear algebra - 3 First course in Probability theory - 4 First course in Signal processing (DFT, sampling theory, ADC) - 5 Review on digital filters - 6 Fundamental image processing (filters) - 7 Matrix representation by using matrices - 8 Fundamental Image Restoration - 9 Programming exercise - 10 ADMM - 11 Programming exercise - 12 Primal Dual Splitting - 13 Programming exercise - 14 Final exercise - 15 Review # ○画像処理特論 (Advanced Image Processing) #### 成績評価の方法 /Assessment Method レポート 30% / Assignments 30% 授業における発表、討論参加等 70%/ Discussion 70% #### 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class プログラミングはMATLABとCで行う We use C and MATLAB for programming exercise. ### 履修上の注意 /Remarks 積極的に発言し講義に参加すること。毎週数人に課題を出し、5分程度発表してもらう。 The students are supposed to participate discussion. Assignments are given to some of the students and they make a few minute presentation in every class. ### 担当者からのメッセージ /Message from the Instructor
数理的アプローチを用いた画像処理の基礎を学ぶ。画像処理を専門としない学生にもためになる内容である。 Fundamental image processing based on mathematical approaches are introduced, which will be beneficial to students who do not major in images. # ○移動通信特論 (Advanced Mobile Communication Systems) 梶原 昭博 / Akihiro KAJIWARA / 情報システム工学科(19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 謹義 クラス /Credits /Semester /Class Format /Class /Year 対象入学年度 2012 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description "デジタル通信の基本原理および特性などの基礎理論について復習した後,通信回線設計や実験などを通して移動通信固有の課題や問題点などを理 解する。後半は無線LANや携帯電話などで用いられているスペクトル拡散通信やOFDMなどの最新の通信技術,およびマイクロ波を用いたITSや自動車レー ダ技術を習得する。なお,移動通信に関する最終試験を受け,その70%以上を到達目標とする。 This class is designed for the student who is already familiar with communication engineering thory in undergraduate course. Prior to understanding the mobile communication systems, the technical concepts such as probability, communication thory and basic electromagnetics are reviewed. Next the student understands the mobile communication engineering issues by the emperical seminar and discussions. Also curent topics of wireless LAN and mobile phones such as CDMA and OFDM technologies can be understood including vehiculat radar technologies." The students must attain more than 70 % of the score for the assigned test. #### 教科書 /Textbooks パワーポイント資料および研究論文を配布 Privately Power-Point presentation materials and technical papers # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) ○「通信方式」森北出版 「Communications systems」 Morikitashuppan #### 授業計画・内容 /Class schedules and Contents - 移動通信システムの概要 (1 Intorduction to mobile communication systems) - 無線伝送路 (2 Mobile radio channels) - 3 デジ タル通信基礎 1 (3 Digital communications fundamentals 1) - 4 デジタル通信基礎2 (4 Digital communications fundamentals 2) - 5 移動通信 1 (5 Mobile communications 1) - 6 移動通信2 (6 Mobile communications 2) - 7 実験・演習 1 (7 Emperical seminar 1) - 8 実験・演習2 (8 Emperical seminar 2) - 9 実験・演習3 (9 Emperical seminar 3) - 10 スペクトル拡散通信とCDMA (10 Spread spectrum & CDMA technologies) - 直交周波数変調(OFDM) (11 Orthgonal frequency division multiple technologies) - 12 近距離高速無線通信技術 (12 Short distance High speed communications) - 13 最近の移動通信技術 (13 Curent topics ob mobile comunication system) - 14 無線ネットワーク技術 (14 Wireless network technologies) - 15 演習とまとめ (15 Exercises and remarks) # 成績評価の方法 /Assessment Method 演習 30%, レポート 70% Exercises 30%, reports 70% # 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class パワーポイント配布資料および「通信方式」森北出版社 Privately Power-Point presentation materials and a text book of 「Communications systems」 for undergraduate student #### 履修上の注意 /Remarks 博士前期課程の「移動通信」の習得を前提としている。 This class is designed for the student familiar with communication engineering theory in graduate course. #### 担当者からのメッセージ /Message from the Instructor 無線技術は通信だけでなくセンサなど我々の身の回りの様々な分野で応用されることが考えられ,積極的な授業参加を希望する。 Highly motivated student in wireless radio and communications are welcomed. 専門科目 情報工学専攻 # ○移動通信特論 (Advanced Mobile Communication Systems) # キーワード /Keywords デジタル通信,無線通信 Degital communications, Wireless communications O # ○情報通信特論 (Advanced Information and Communication Theory) 上原 聡 / Satoshi UEHARA / 情報システム工学科 (19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 クラス /Year /Credits /Semester /Class Format /Class 2012 2013 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 情報理論や符号理論に有用な有限体の基底について理解を深める。情報通信特論では、代数学の基本である基底の性質を証明も含めて理解する ことを到達目標とする。 This cource deals with bases for fast calculations over finite fields. #### 教科書 /Textbooks 配布資料 / No assigned textbook # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) - A.J. Menezes, et al., Applications of Finite Fields, Kluwer Academic Publishers, - R.J. McEliece, Finite Fields for Computer Scientists and Engineers, Kluwer Academic Publishers,他 #### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス . 基底 - 2 基底の数と応用 - 3 有限体上の基底 - 4 多項式と根 - 5 因数分解 - 6 既約多項式 - 7 多項式の合成 - 8 既約多項式の構成 - 9 正規基底 - 10 正規多項式 - 11 正規基底の構成 - 12 最適正規基底 - 13 最適正規基底の構成 - 14 最適正規基底の応用 - 15 まとめ - 1 Introduction to finite fields and bases - 2 The enumeration of Bases and applications - 3 Basics - 4 Root finding - 5 Factoring polynomials over finite fields - 6 Irreducible polynomials - 7 Compositions of polynomials - 8 Construction of irreducible polynomials - 9 Normal bases - 10 Characterization of N-Polynomials - 11 Construction of normal bases - 12 Optimal normal bases - 13 Determination of all optimal normal bases - 14 Applications - 15 Final review # 成績評価の方法 /Assessment Method レポート / Reports 100% ### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 事前に配布資料に目を通して予習を行うこと。 Students are required to read the assigned readings prior to the class. 専門科目 情報工学専攻 # ○情報通信特論 (Advanced Information and Communication Theory) ### 履修上の注意 /Remarks # 担当者からのメッセージ /Message from the Instructor 情報理論や符号理論の有益な定理の紹介と証明が主な内容となる。 情報理論·符号理論を基に設計されるシステムの高速化に効果的な基底について学習する。 Students are expected to learn bases for fast calculations over finite fields and apply them to their own research field. ### キーワード /Keywords 有限体,基底,多項式の因数分解,既約多項式,正規基底 Finite field, bases, factoring polynomial, irreducible polynomial, normal bases 2012 2011 2013 O # ○VLSI信号解析特論 (Advanced VSLI Signal Analysis) 鈴木 五郎 / Goro SUZUKI / 情報メディア工学科 /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 謹義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2004 2002 2003 2005 2006 2007 2008 2009 2010 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description VLSIでは10Gトランジスタが一つのチップに搭載される時代になっているが、大規模な回路の信号解析技術に関して学ぶ。desigh crisisの breakthrough技術を身に着けることができます。 In the VLSI design, signal integrity that is signal delay, cross talk noise, power noise, substrate noise, reflection and so on, has been critical issue. Leading edge high speed and high accurate signal integrity analysis techniques are introduced. You can get several hints for breakthrough technology in the VLSI design crisis area. #### 教科書 /Textbooks 鈴木五郎 "線形回路解析入門" 共立出版社 Goro Suzuki "Linear Circuit Analysis" Kyouritsu Publishing Co.,Ltd # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) L.Pileggi et al. "IC Interconnect Analysis" Kluwer Academic Publisher ISBN1402070756 #### 授業計画・内容 /Class schedules and Contents 1 シグナルインテグリテイ Signal Integrity 2 状態方程式 の作り方 How to make state equation 3 状態方程式 の使い方 How to use state equation 4 回路解析の基本 Basic circuit analysis 5 差分による回路解析 Circuit analysis by ifference equation 6 並列処理による回路解析 Circuit analysis by parallel processor 7 Random Walk による回路解析 8 Model Order Reduction (1) AWE法 AWE method 9 Model Order Reduction (2) Projection Framework法 Projection Framework method 10 Model Order Reduction (3) Projection Framework法の応用 Advanced Projection Framework method 11 Model Order Reduction (4) Trancated Balanced Realization法 Trancated Balanced Realization method 12 信号解析例 (1) Delay解析 Delay analysis 13 信号解析例 (2) Bus noise 解析 Bus noise analysis 14 信号解析例 (3) 電源noise 解析 Power noise analysis 15 まとめ Wrap up #### 成績評価の方法 /Assessment Method 期末試験 Final test 100% # ○VLSI信号解析特論 (Advanced VSLI Signal Analysis) # 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 予習2時間・復習2時間を行うこと。 2 hours study is required for preparation and review, respectively. ### 履修上の注意 /Remarks IEEE/ACM DAC, ICCAD など主要学会の関連論文を調べておくこと。 Check out the related papers of IEEE/ACM DAC, ICCAD # 担当者からのメッセージ /Message from the Instructor LSIハードウエア設計に興味のある学生は選択必須。 This course is highly recommended for the students who are interested in VLSI design. # ○組み合わせ最適化特論 (Advanced Combinatorial Optimization) 担当者名 高島 康裕 / Yasuhiro TAKASHIMA / 情報システム工学科(19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 組み合わせ最適化問題の基本概念である計算量理論について講義する.また,最新の論文からの話題を交えて計算量について議論する.本講義 の到達目標は,計算量理論を習得し,考慮する問題の計算複雑度を評価できる. This course is a lecture of the complexity theory which is basic of the combinatorial optimization problem. Furthermore, the recent topics of the complexity theory are discussed. The objective of this course is to acquire the complexity theory and to estimate the complexity of the problem. #### 教科書 /Textbooks 特に無し None ### 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) M. R. Gary and D. S. Johnson, Computers and Intractability #### 授業計画・内容 /Class schedules and Contents - 1 ガイダンス - 2 計算量とは - 3 NP完全 - 4 NP困難 - 5 近似手法,発見的手法 - 6 応用トピック (1) - 7 応用トピック (2) - 8 応用トピック (3) - 9 応用トピック (4) - 10 応用トピック (5) - 11 応用トピック (6) - 12 応用トピック (7) - 13 応用トピック (8) 14 応用トピック (9) - 15 まとめ ※応用トピックでは最近の研究動向に関する議論を行う.詳細については開講時に連絡する. - 1 Guidance - 2 Introduction to Complexity - 3 NP-Completeness - 4 NP-Hardness - 5 Approximation Methods and Heuristics - 6 Advanced Topics (1) - 7 Advanced Topics (2) - 8 Advanced Topics (3) - 9 Advanced Topics (4) - 10 Advanced Topics (5) - 11 Advanced Topics (6) 12 Advanced Topics (7) - 13 Advanced Topics (8) - 14 Advanced Topics (9) - 15 Conclusion - X Advanced Topics (1) to (9) deal with the recent topics of the complexity theory. Details are given in class. #### 成績評価の方法 /Assessment Method 授業への取り組み (Contribution) 20% レポート (Report) 80% # ○組み合わせ最適化特論 (Advanced Combinatorial Optimization) # 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class アルゴリズム理論を理解しておくこと. You should understand the algorithm theory. #### 履修上の注意 /Remarks # 担当者からのメッセージ /Message from the Instructor 取り扱っている問題の複雑さの議論は理論的な考察をするにあたり必要な項目である.本講義では,最新の論文からトピックを選び講義する. The complexity of the problem is one of the important issues for
the theoretical consideration. To obtain it, I select several hot topics from the current papers and lecture them. # ○VLSI物理設計特論 (Advanced VLSI Physical Design) 担当者名 中武 繁寿 / Shigetoshi NAKATAKE / 情報システム工学科(19~) /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 本講義では、VLSI物理(レイアウト)設計に関する最先端の学術論文(国際会議発表を含む)を題材にして、そこで提案されている自動設計技術を、理論的な視点、及び実用的な視点からディベート方式により考察し、それらの自動設計技術を応用した設計ツール開発のための知識・技術の習得を目標とする。 In this class, focusing on advanced technologies in VLSI physical (layout) designs, we review technical papers (including conference papers) and discuss about the proposing technologies for design automation from theoretical and practical viewpoints. Furthermore, we acquire knowledges to develop VLSI physical design tools. #### 教科書 /Textbooks 講義中に配布する資料 Documents distributed in class # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 担当教員より指示 Books introduced in class #### 授業計画・内容 /Class schedules and Contents - 1 VLSI物理設計に関する最先端技術の動向 - 2 VLSI配置設計に関する学術論文の紹介(1) - 3 VLSI配置設計に関する学術論文の紹介(2) - 4 VLSI配置設計に関する学術論文の紹介(3) - 5 学術論文の理論的な考察、手法の比較(ディベート) - 6 学術論文の実用的な考察、手法の比較(ディベート) - 7 設計ツールとしての実現方法に関する考察(ディベート) - 8 VLSI配線設計に関する学術論文の紹介(1) - 9 VLSI配線設計に関する学術論文の紹介(2) - 10 VLSI配線設計に関する学術論文の紹介(3) - 11 学術論文の理論的な考察、手法の比較(ディベート) - 12 学術論文の実用的な考察、手法の比較(ディベート) - 13 設計ツールとしての実現方法に関する考察(ディベート) - 14 VLSI物理設計に関する将来技術に対する展望(ディベート) - 15 総集編 ※学術論文の詳細については開講時に連絡する. - 1 Advanced technologies of VLSI physical designs - 2 Technical paper reviewing of VLSI placement (1) - 3 Technical paper reviewing of VLSI placement (2) - 4 Technical paper reviewing of VLSI placement (3) - 5 Discussion of technical papers for theoretical aspects - 6 Discussion of technical papers for practical aspects - 7 Discussion of technical papers for design tools implementation - 8 Technical paper reviewing of VLSI routing (1) - 9 Technical paper reviewing of VLSI routing (2) - 10 Technical paper reviewing of VLSI routing (3) - 11 Discussion of technical papers for theoretical aspects - 12 Discussion of technical papers for practical aspects - 13 Discussion of technical papers for design tools implementation - 14 Perspective of VLSI physical designs - 15 Conclusions - $\protect\ensuremath{\mathsf{X}}\xspace$ Details of technical papers are given in class. # ○VLSI物理設計特論 (Advanced VLSI Physical Design) #### 成績評価の方法 /Assessment Method 積極的な授業参加(ディベート内容) 50% レポート 50% Contributions to the debate 50% Report 50% #### 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 学部における離散構造とアルゴリズム、集積回路設計、数理計画法の復習、大学院におけるVLSI物理設計の復習 discrete structure and algorithms, integrated circuit design, mathematical programming, VLSI physical design ### 履修上の注意 /Remarks 技術内容が高度なために、受講希望者は事前に担当教員に連絡をすること。 Students must contact to faculty to enroll this class. #### 担当者からのメッセージ /Message from the Instructor 最先端のVLSI物理設計技術では、理論的、または実用的な視点から新規技術が提案されています。その両方の視点が将来の技術発展には必要であることを学んで欲しいと思います。 In advanced technologies of VLSI physical design, novel technologies have been proposed from theoretical and practical viewpoints. To develop technologies in future needs the both viewpoints. # ○非線形最適化特論 (Advanced Nonlinear Programming) 宮下 弘 / Hiroshi MIYASHITA / 情報メディア工学科 /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2004 2012 2013 2002 2003 2005 2006 2007 2008 2009 2010 2011 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description 最近の非線形解析と計算機の進歩は工学分野,たとえばVLSIの設計自動化などの分野における非線形問題を解くのを可能としている。凸解析は この非線形解析の中心をなす。この科目では学生はより進んだ凸集合と凸関数の理論とその連続から離散にわたる広範囲な最適化との密接な関 係について学習します。 本講義では非線形最適化の中でも特に有用性の高い凸解析の基礎理論を理解しいくつかの基本的な手法, アルゴリズムを理解し使えるようにすることを到達目標としています。 Recent development in nonlinear analysis and computers makes it possible to solve nonlinear problems in engineering such as VLSI design automations. Convex analysis centers on the theory of nonlinear analysis. In this lecture the students can obtain fundamentals of the advanced theory of convex sets and functions, and its close connections with numerous topics ranging from continuous to discrete optimization. This lecture aims at giving the students basic knowledge of convex analysis so that the students can not only understand the theory but also use it to construct optimization algorithms. #### 教科書 /Textbooks 講義資料を配布 Lecture materials given in class # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) D.P. Bertsekas; Convex Optimization Theory, Athena Scientific, June 2009. #### 授業計画・内容 /Class schedules and Contents - 1 凸解析の基本概念 - 2 凸集合と凸関数 - 3 超平面分離と共役関数 - 4 凸最適化における基本概念 - 5 制約付き最適化,最適解の存在 - 6 鞍点とミニマックス理論 - 7 双対性の枠組,双対最適解の存在 - 8 双対性と最適化 - 9 非線形のファルカスの補題 - 10 線形計画法における双対性 - 11 凸計画法における双対性 - 12 共役関数の劣勾配 - 13 ミニマックス双対定理 - 14 鞍点定理 - 15 まとめ - 1 Basic convex analysis concepts - 2 Convex sets and functions - 3 Hyperplane separation, conjugate functions - 4 Basic concepts of convex optimization - 5 Constrained optimization, existence of optimal solutions - 6 Saddle point and minimax theory - 7 Duality framework, existence of dual optimal solutions - 8 Duality and optimization - 9 Nonlinear Farkas's lemma - 10 Linear programming duality - 11 Convex programming duality - 12 Subgradients of conjugate functions - 13 Minimax duality theorems - 14 Saddle point theorems - 15 Summary of the lecture # ○非線形最適化特論 (Advanced Nonlinear Programming) #### 成績評価の方法 /Assessment Method 課題提出 2回 各50% Two assignments Each 50% #### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 線形代数学と解析学の基礎科目を修得していること The mathematical prerequisites are a course in linear algebra and a course in real analysis. #### 履修上の注意 /Remarks # 担当者からのメッセージ /Message from the Instructor 非線形計画法,もちろん線形計画法もそうですが,その知識,手法は工学の分野でたいへん広く使われ,役立っています。その基礎になってい る数学的な考え方,取り扱い方を理解していることが専門分野での研究に役立つでしょう。 The theory and algorithms devised in nonlinear programming can be used in many research areas of engineering. The students who attend this class are expected to apply nonlinear programming to their own research areas. ### キーワード /Keywords 凸解析, 凸集合, 凸関数, 制約付き最適化, 双対性と最適化, 線形計画法における双対性, 凸計画法における双対性, 鞍点理論 Convex analysis, convex set, convex function, constrained optimization, duality and optimization, duality in linear programming, duality in convex programming, saddle point theory # 制御応用工学特論 (Advanced Applied Control Engineering) 担当者名 高橋 徹 / Toru TAKAHASHI / 情報メディア工学科 /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 講義 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 /Year of School Entrance 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 先端技術を用いた自動車では、種々のコンピュータ制御システムが用いられている。この授業では、車両運動を解析するための車両モデルについて学ぶと共に、SAE論文の輪講を通じて、自動車制御で用いられる先端の制御手法について学ぶ。到達目標は、車両運動制御の新しい問題提起ができるようになること・ Various computer-controlled units have been used in advanced automotive systems. This course is to offer vehicle dynamics models for analyzing vehicle motion, and to introduce advanced control methods that are significantly of interest, through reviewing SAE papers. #### 教科書 /Textbooks プリント配布。 / Lectures based on original texts. # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 適宜指示する。 / To be announced in class. #### 授業計画・内容 /Class schedules and Contents - 1 車両運動モデルとMATLAB/Simulinkシミュレーション1 - 2 車両運動モデルとMATLAB/Simulinkシミュレーション2 - 3 車両運動モデルとMATLAB/Simulinkシミュレーション3 - 4 エンジン制御事例 - 5 ステアリング制御事例 - 6 ブレーキ制御事例 - 7 ITS技術事例 - 8 SAE論文輪講1 - 9 SAE論文輪講2 - 10 SAE論文輪講3 - 11 SAE論文輪講4 - 12 SAE論文輪講5 - 13 SAE論文輪講6 - 14 SAE論文輪講7 - 15 まとめ ※SAE論文輪講の詳細については開講時に連絡する。 - 1 Vehicle model and MATLAB/Simulink simulations 1 - 2 Vehicle model and MATLAB/Simulink simulations 2 - 3 Vehicle model and MATLAB/Simulink simulations 3 - 4 Case study on engine control systems - 5 Case study on steering control systems - 6 Case study on braking control systems - 7 Case study on ITS technology - 8 Review 1 of SAE Papers - 9 Review 2 of SAE Papers - 10 Review 3 of SAE Papers - 11 Review 4 of SAE Papers - 12 Review 5 of SAE Papers - 13 Review 6 of SAE Papers - 14 Review 7 of SAE Papers - 15 Conclusion - ※ Details of Review of SAE Papers are given in class. # 制御応用工学特論 (Advanced Applied Control Engineering) ### 成績評価の方法 /Assessment Method レポート 50% 最終レポート 50% Mid-term paper 50% Final paper 50% # 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class 授業は議論を中心に進めるため、事前に配布資料を読み込んでくること。 Class time will be used to discuss. Students are required to read all assigned articles prior to the class. ### 履修上の注意 /Remarks 積極的な授業参加が求められる。 / This class will be participation intensive. # 担当者からのメッセージ /Message from the Instructor 積極的な授業参加が求められる。 / This class will be participation intensive. # ○計測応用工学特論 (Advanced Sensor Systems Engineering) 松波 勲 / Isamu MATSUNAMI / 情報メディア工学科 /Instructor 履修年次 単位 2単位 学期 2学期 授業形態 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2004 2012 2013 2002 2003 2005 2006 2007 2008 2009 2010 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department #### 授業の概要 /Course Description レーダ・センサの基本原理及び特性などの基礎理論について復習した後,レーダシステム設計や知能化カーロボによる実験などを通して計測固 有の課題や問題点などを理解し,それらの問題を解決するための信号処理技術について習得することが到達目標である.後半では,FPGAで複数 センサを統合した高精度かつ高機能なセンサフュージョンシステムの構築,インターフェース及び各センサ情報の処理機構についても習得する Prior to understanding the radar and sensor systems, the technical concepts such as electromagnetic theory, radar equation, radio propagation and signal processing are reviewed. Next the student understands the applied measurement engineering issues by the empirical seminar using intelligent car and robot systems and discussions. Also the construction of the high performance and functionality sensor fusion system with FPGA and the signal
processor of its sensor information can be understood. #### 教科書 /Textbooks プリント及び研究論文を配布 Printed materials and papers from technical journal will be handed to the students # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 別途指示 To be announced in class #### 授業計画・内容 /Class schedules and Contents 第1回:レーダ・センサシステムの概念 第2回:電波伝搬基礎 第3回:レーダ基本原理1(計測原理) 第4回:レーダ基本原理2(レーダ方程式) 第5回:レーダ・センサ信号処理技術1(信号,クラッタ,雑音解析) 第6回:レーダ・センサ信号処理技術2(雑音,クラッタ抑圧処理) 第7回:実験・演習1(信号,クラッタ,雑音解析) 第8回:実験・演習2(雑音,クラッタ抑圧処理) 第9回:実験・演習3(障害物検知) 第10回:センサ統合システムの基礎 第11回:赤外線・画像センサによる障害物・白線検知1(各種センサ制御) 第12回:赤外線・画像センサによる障害物・白線検知2(障害物・白線検知) 第13回:FPGAを用いた知能化カーロボの実現1(実験) 第14回:FPGAを用いた知能化カーロボの実現2(検証) 第15回:まとめ - 1 Concept of radar and sensor systems - 2 Radio propagation fundamentals - 3 Radar basic principles 1 (Principle of measurement) - 4 Radar basic principles 2 (Radar equation) - 5 Radar and sensor signal processing 1 (Analysis of target signal, clutter and noise) - 6 Radar and sensor signal processing 2 (Suppression of clutter and noise) - 7 Empirical seminar 1 (Analysis of target signal, clutter and noise) - 8 Empirical seminar 2 (Suppression of clutter and noise) - 9 Empirical seminar 3 (Obstacle detection) - 10 Sensor fusion systems fundamentals - 11 Obstacles and white line detection by infrared and imaging sensors 1 (Sensors control) - 12 Obstacles and white line detection by infrared and imaging sensors 2 (Obstacles and white line detection) - 13 Realization of intelligent car and robot with multiple sensors by using FPGA 1 (Experimental trial) - 14 Realization of intelligent car and robot with multiple sensors by using FPGA 2 (Summary of practices and experiments) - 15 Summary # ○計測応用工学特論 (Advanced Sensor Systems Engineering) #### 成績評価の方法 /Assessment Method レポート課題100% / Report 100% # 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class MATLABの基礎的な知識と応用知識及び C 言語プログラミングの知識を事前に取得すること. Basic knowledge about MATLAB and C programming skills should be obtained in advance. # 履修上の注意 /Remarks 博士前期課程の「計測応用工学」の習得を前提としている. This class is designed for the student who is already familiar with measurement system engineering in the master course program. # 担当者からのメッセージ /Message from the Instructor 積極的な授業参加. This class will seek the active participation of students. # ○システム制御理論特論 (Advanced System Control Theory) 担当者名 堀口 和己 / Kazumi HORIGUCHI / 情報システム工学科(19~) /Instructor 履修年次単位2単位学期1学期授業形態講義クラス/Year/Credits/Semester/Class Format/Class 対象入学年度 /Year of School Entrance | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | |------|------|------|------|------|------|------|------|------|------|------|------| | | | | | | | | | | | | 0 | 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 /Department 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース #### 授業の概要 /Course Description 1980年以降に展開されたシステム制御理論を学ぶ。まず,数学の予備知識と線形システムの基礎を復習する。ついで,フィードバックによる線 形システムの安定化を考察し,安定化制御器のパラメータ化を理解する。そして,ロバスト制御理論の基礎を習得する。最後に,ロバスト制御 システムを設計する重要な手段であるH2制御とH∞制御を学ぶ。 到達目標は次の通り。 - ・安定化制御器のパラメータ化ができる。 - ・ロバスト制御系を設計できる。 In this course, we learn the system control theory developed after 1980. First, we review backgrounds of mathematics and fundamentals of linear systems. Next, we consider stabilization of linear systems by feedback and understand parameterizations of stabilizing controllers. Then, we learn fundamentals of the robust control theory. Finally, we learn the H2 control and the H $_{\infty}$ control which are important methods to design robust control systems. The target is as follows. - · We can parameterize stabilizing controllers. - We can design robust control systems. # 教科書 /Textbooks 授業で講義ノートを配布予定。 Lecture note will be distributed in class. #### 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 劉康志,申鉄龍:「現代制御理論通論」,培風館 K. Zhou, J. Doyle, K. Glover: "Robust and Optimal Control," Prentice-Hall. # ○システム制御理論特論 (Advanced System Control Theory) #### 授業計画・内容 /Class schedules and Contents - 1 概要 - 2 システム制御のための数学 線形代数 - - 3 システム制御のための数学 線形行列不等式 - - 4 線形システム 状態空間表現 - - 5 線形システム 安定性 - - 6 フィードバックによる安定化 状態フィードバックとオブザーバ - - 7 フィードバックによる安定化 安定化制御器のパラメータ化 - - 8 ロバスト制御 モデルの不確かさ - - 9 ロバスト制御 ロバスト安定 - - 10 ロバスト制御 ロバスト性能 - - 11 H2制御 H2ノルムとH2制御 - - 12 H2制御 H2制御系の設計 - - 13 H∞制御 H∞ノルムとH∞制御 - - 14 H∞制御 H∞制御系の設計 - - 15 まとめ - 1 Overview - 2 Mathematics of systems control; Linear algebra - 3 Mathematics of systems control; Linear matrix inequality - 4 Linear systems; State space description - 5 Linear systems; Stability - 6 Stabilization by feedback; State feedback and observer - 7 Stabilization by feedback; Parameterization of stabilizing controllers - 8 Robust control; Model uncertainty - 9 Robust control; Robust stability - 10 Robust control; Robust performance - 11 H2 control; H2-norm and H2 control - 12 H2 control; Synthesis of H2 control system - 13 H∞ control; H∞-norm and H∞ control - 14 H∞ control; Synthesis of H∞ control system - 15 Review # 成績評価の方法 /Assessment Method 課題 50% 期末試験 50% Assignments 50% Final Examination 50% # 事前・事後学習の内容 /Preparation and Review # 授業に対する準備事項 /Preparation for the Class 講義ノートをあらかじめ読んでおくこと。 Students are required to read the lecture note in advance. #### 履修上の注意 /Remarks 受講学生は、システム制御理論の基礎を習得している必要があります。 Students are required to have learned fundamentals of system control theory. #### 担当者からのメッセージ /Message from the Instructor 制御理論は行列理論,回路理論,信号理論,情報理論,などと関係する興味深い理論です。理論の好きな受講学生を歓迎します。 System control theory is an interesting theory which is related to matrix theory, circuit theory, signal theory, information theory, and so on. Students who like theory are welcomed. ### キーワード /Keywords 線形システム,安定化,ロバスト制御,H2制御,H∞制御 linear system, stabilization, robust control, H2 control, H∞ control # ○ネットワークアーキテクチャ特論 (Advanced Network Architecture) 古閑 宏幸 / Hiroyuki KOGA / 情報システム工学科 (19~) /Instructor 履修年次 単位 2単位 学期 1学期 授業形態 クラス /Year /Credits /Semester /Class Format /Class 対象入学年度 2012 2013 2002 2003 2004 2005 2006 2007 2008 2009 2010 /Year of School Entrance O 対象学科 【選択】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース, 機械システムコース, 建 築デザインコース, 通信・メディア処理コース, コンピュータシステムコース /Department # 授業の概要 /Course Description インターネットなど情報通信に利用されるネットワークの機能構造をアーキテクチャの観点から体系的に学び,それらの基本的な考え方や設計 手法について考察する.さらに,新世代ネットワークアーキテクチャに向けた最新の研究動向を紹介し,実践的なネットワークプログラミング を取り上げて理解を深める.最終的にネットワーク上で情報システムを設計できる能力の習得を到達目標とする. In this course, students systematically learn function structure of computer networks used for information communications such as the Internet from a viewpoint of network architecture. This course provides discussion on design concepts, principles, and operation of computer networks. It also covers advanced network architecture and network programming. The goal of this course is to enable students to acquire ability to design information systems on computer networks. #### 教科書 /Textbooks 講義資料 Lecture materials # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) アンドリュー・S・タネンバウム著,水野ら訳「コンピュータネットワーク」日経BP社 Andrew S. Tanenbaum, Computer Networks, Prentice Hall, #### 授業計画・内容 /Class schedules and Contents - 1 概論 - 2 階層モデル - 3 物理層・データリンク層 - 4 ネットワーク層(1)【通信モデル】 - 5 ネットワーク層(2)【経路制御】 - 6 ネットワーク層(3)【通信プロトコル】 - トランスポート層(1)【通信モデル】 - 8 トランスポート層(2)【通信プロトコル】 - アプリケーション層 - 10 次世代ネットワークアーキテクチャ - 11 応用トピック - 12 ネットワークプログラミング(1)【ソケットAPI】 - 13 ネットワークプログラミング(2)【通信プロトコル】 - 14 ネットワークプログラミング(3)【演習】 - 15 まとめ - 1 Overview - 2 Laver Model - 3 Physical and Data Link Layers - 4 Network Layer 1 【Communication Model】 - 5 Network Layer 2 【Routing Technology】 - 6 Network Layer 3 【Communication Protocol】 - 7 Transport Layer 1 【Communication Model】 - 8 Transport Layer 2 【Communication Protocol】 - 9 Application Layer - 10 Advanced Network Architecture - 11 Advanced Topics - 12 Network Programming 1 [Socket API] - 13 Network Programming 2 【Communication Protocol】 - 14 Network Programming 3 [Exercise] - 15 Review # ○ネットワークアーキテクチャ特論 (Advanced Network Architecture) # 成績評価の方法 /Assessment Method レポート 100% Report 100% # 事前・事後学習の内容 /Preparation and Review ### 授業に対する準備事項 /Preparation for the Class 講義資料を予習しておくこと. Study the lecture materials in advance. # 履修上の注意 /Remarks Cプログラミング習得していることを前提とします. This course supposes C programming skills. #### 担当者からのメッセージ /Message from the Instructor 身近なコンピュータネットワークの設計・動作原理を理解し,研究分野に役立てて欲しい. I believe that this course will help students to understand design concepts and principles of computer networks for their research fields. # ○特別研究 (Special Research) 担当者名 上江洲 一也 / Kazuya UEZU / 環境生命工学科 (19~) /Instructor 履修年次単位6単位学期通年授業形態実験・実習クラス/Year/Credits/Semester/Class Format/Class /Teal /Cledits /Semester /Class Format 対象入学年度 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 /Year of School Entrance 対象学科 【必修】 環境化学プロセスコース, 環境バイオシステムコース, 環境資源システムコース /Department #### 授業の概要 /Course Description 論文作成に向けた研究指導を行う。学生と協議して、学生の研究課題に応じた特別研究テーマの設定、研究計画の作成及び研究方法等を学生の 志向する専門領域、研究課題に応じた全般的な研究指導を行う。 Students set theme for thesis and conduct research in order to achieve the objective of thier thesis under supervision of academic advisors. # 教科書 /Textbooks 特になし # 参考書(図書館蔵書には 〇) /References (Available in the library: 〇) 特になし #### 授業計画・内容 /Class schedules and Contents 学生の研究課題に応じて、適宜決定する。 指導教員の判断でゼミ合宿を行うことがある。 Research plans are determined depending on the research objectives of students. Study tours are included, if needed. #### 成績評価の方法 /Assessment Method 研究課題の新規性、有用性、進歩性、独創性等に関して考えることが必要 It is important to understand novelty, usefulnessm progressivity, originality, and so on of your reseach. 研究への取り組み・研究成果の結果を総合して評価する。 Approach to Research, Presentations, Defence, and Achievement ### 事前・事後学習の内容 /Preparation and Review #### 授業に対する準備事項 /Preparation for the Class 研究指導教員の指導のもと、過去の関連研究の調査を行う。 Search for past researches related to the research objective under supervision of academic advisor #### 履修上の注意 /Remarks 研究課題の新規性、有用性、進歩性、独創性等に関して考えることが必要 It is important to understand novelty, usefulnessm progressivity, originality, and so on of your reseach. ### 担当者からのメッセージ /Message from the Instructor 研究の背景、位置づけ、目標を十分に理解した上で、自分自身の個性を生かして、先進的に研究テーマに取り組んでほしい。Understand backgrounds, objective, and originality
of your own research, and actively challenge your research.